J. Phys. IV France
Volume 110, September 2003
Page(s) 341 - 346

J. Phys. IV France
110 (2003) 341
DOI: 10.1051/jp4:20020717

Acceleration of the plates of an ERA cassette using a rigid plastic Gurney model

Y. Partom

RAFAEL, P.O. Box 2250, Haifa 31021, Israel

An Explosive Reactive Annor (ERA) cassette is a sandwich of an explosive layer between two steel plates. To assess the performance of an ERA cassette against a shaped charge metal jet, we need to estimate the velocity and shape of the moving plates interacting with the jet. This is usually done with the classical Gurney model or by computer simulation. The Gurney model assumes that the accelerated plates are rigid, and is able to predict their final velocity quite accurately. But tests and computer simulations show that because of their plasticity, the plates become curved as they accelerate. In this paper we revisit Gurney's derivation and extend it to include the plasticity of the plates. We assume that the plates are rigid-plastic and we model the symmetric case as well as the asymmetric case. To check the model we perform computer simulations with AUTODYN for the same two problems. We find a fair agreement between the model predictions and the computer simulation results.

© EDP Sciences 2003

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.