J. Phys. IV France
Volume 09, Numéro PR10, December 1999
International Workshop on Electronic Crystals
Page(s) Pr10-101 - Pr10-104
International Workshop on Electronic Crystals

J. Phys. IV France 09 (1999) Pr10-101-Pr10-104

DOI: 10.1051/jp4:19991026

Mobility of gliding dislocation loops and their contribution to the conductivity of CDW-conductors

S.N. Artemenko1, F. Gleisberg2 and W. Wonneberger2

1  Institute for Radioengineering and Electronics of the Russian Academy of Sciences, 103907 Moscow, Russia
2  Universität Ulm, Abteilung für Mathematische Physik, 89069 Ulm, Germany

We study theoretically structure, drift velocity, and resistivity contribution of gliding phase-dislocation loops in the electronic crystal of a charge density wave (CDW). It is shown that both structure and mobility of these dislocations are determined by the interplay between Coulomb and interchain interaction. CDW deformations due to the dislocation induce changes of the local quasiparticle density which in turn affect the deformation of the CDW and the structure of the dislocation. It leads to different length, energy scales, and the mobility of dislocations for semimetallic and semiconducting CDW conductors and to a pronounced temperature dependence in the latter materials. The drift velocity of dislocations exceeds the CDW velocity. As temperature decreases it decreases, and the convective contribution to the conductivity eventually becomes smaller than the additional quasiparticle contribution induced by the phase deformations near the dislocation.

© EDP Sciences 1999