Numéro |
J. Phys. IV France
Volume 134, August 2006
EURODYMAT 2006 - 8th International Conference on Mechanical and Physical Behaviour of Materials under Dynamic Loading
|
|
---|---|---|
Page(s) | 1047 - 1051 | |
DOI | https://doi.org/10.1051/jp4:2006134160 | |
Publié en ligne | 26 juillet 2006 |
J. Cirne, R. Dormeval, et al.
J. Phys. IV France 134 (2006) 1047-1051
DOI: 10.1051/jp4:2006134160
Dynamic materials behavior of a porous pressureless sintered steel and a HIPped steel
H. Nahme1, E. Lach2 and R. Rohr11 Fraunhofer-Institut für Kurzzeitdynamik, EMI, Eckerstr. 4, 79104 Freiburg, Germany
2 French-German Research Institut of Saint-Louis, ISL, 5 rue du Général Cassagnou, 68301 Saint-Louis, France
Published online: 26 July 2006
Abstract
Dampening of shock waves is of interest in many applications. The
material studied is a low carbon steel alloy as it is usually used
for sintered automotive parts. The low carbon steel alloy was in the
initial state pressure less sintered with a density of about 83%
of the theoretical density. Some specimens had been hot
isostatically pressed (HIPped) at 1050 bar and 1120C for 1
h. Dynamic compression tests revealed that no Pochhammer-Cree
vibration occured for the porous material whereas strong vibration
could be observed for the HIPped steel alloy. Planar plate impact
tests had been performed in order to study the influence of the
porous microstructure on shock waves. The results show that the
shock wave velocity is drastically decreased compared to dense
materials. It can be concluded that a microstructure with low
porosity and small homogeneously distributed pores is an excellent
dampening material for strong shock waves.
© EDP Sciences 2006