Numéro
J. Phys. IV France
Volume 134, August 2006
EURODYMAT 2006 - 8th International Conference on Mechanical and Physical Behaviour of Materials under Dynamic Loading
Page(s) 915 - 920
DOI https://doi.org/10.1051/jp4:2006134140
Publié en ligne 26 juillet 2006
EURODYMAT 2006 - 8th International Conference on Mehanical and Physical Behaviour of Materials under Dynamic Loading
J. Cirne, R. Dormeval, et al.
J. Phys. IV France 134 (2006) 915-920

DOI: 10.1051/jp4:2006134140

Deformation of nanocrystalline materials at ultrahigh strain rates – microstructure perspective in nanocrystalline nickel

Y.M. Wang, E.M. Bringa, M. Victoria, A. Caro, J.M. McNaney, R. Smith and B.A. Remington

Lawrence Livermore National Laboratory, Livermore, CA 94550, USA


Published online: 26 July 2006

Abstract
Nanocrystalline materials with grain sizes smaller than 100 nm have attracted extensive research in the past decade. Due to their high strength, these materials are good candidates for high pressure shock loading experiments. In this paper, we investigated the microstructural evolutions of nanocrystalline nickel with grain sizes of 10-50 nm, shock-loaded in a range of pressures (20-70 GPa). A laser-driven isentropic compression process was applied to achieve high shock-pressures in a timescale of nanoseconds and thus the high-strain-rate deformation of nanocrystalline nickel. Postmortem transmission electron microscopy (TEM) examinations reveal that the nanocrystalline structures survive the shock deformation and that dislocation activity is the prevalent deformation mechanism when the grain sizes are larger than 30 nm, without any twinning activity at twice the stress threshold for twin formation in micrometer-sized polycrystals. However, deformation twinning becomes an important deformation mode for 10-20 nm grain-sized samples.



© EDP Sciences 2006