Numéro |
J. Phys. IV France
Volume 08, Numéro PR8, November 1998
2nd European Mechanics of Materials Conference on Mechanics of Materials with Intrinsic Length Scale : Physics, Experiments, Modelling and Applications
|
|
---|---|---|
Page(s) | Pr8-357 - Pr8-364 | |
DOI | https://doi.org/10.1051/jp4:1998844 |
2nd European Mechanics of Materials Conference on Mechanics of Materials with Intrinsic Length Scale : Physics, Experiments, Modelling and Applications
J. Phys. IV France 08 (1998) Pr8-357-Pr8-364
DOI: 10.1051/jp4:1998844
1 Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12200 Berlin, Germany
2 École des Mines de Paris, Centre des Matériaux, UMR 7633 du CNRS, BP. 87, 91003 Evry, France
3 Techn. Univ. Berlin, Inst. für Mechanik (FB 10), 10623 Berlin, Germany
© EDP Sciences 1998
J. Phys. IV France 08 (1998) Pr8-357-Pr8-364
DOI: 10.1051/jp4:1998844
Finite deformation Cosserat-type modelling of dissipative solids and its application to crystal plasticity
R. Sievert1, S. Forest2 and R. Trostel31 Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12200 Berlin, Germany
2 École des Mines de Paris, Centre des Matériaux, UMR 7633 du CNRS, BP. 87, 91003 Evry, France
3 Techn. Univ. Berlin, Inst. für Mechanik (FB 10), 10623 Berlin, Germany
Abstract
Recently, several proposals were made for the enlargement of the classical field equations in order to solve locally inhomogeneous deformation problems (e.g. at shear banding and damage localization or of composites). In the present paper basic issues of this topic will be treated : i) the implicit dependence within the gradient plasticity theory, ii) the more open micromorphic view-point of the gradient of internal variable approach, iii) a derivation of an elastic-plastic decomposition of the Cosserat strain measures, iv) its application to the description of lattice curvature in crystals. Finally, finite element simulations of strain localization in Cosserat single crystals are presented.
© EDP Sciences 1998