Numéro
J. Phys. IV France
Volume 06, Numéro C7, Novembre 1996
39éme Colloque de Métallurgie de l'INSTN
MULTICOUCHES METALLIQUES
Page(s) C7-19 - C7-30
DOI https://doi.org/10.1051/jp4:1996703
39éme Colloque de Métallurgie de l'INSTN
MULTICOUCHES METALLIQUES

J. Phys. IV France 06 (1996) C7-19-C7-30

DOI: 10.1051/jp4:1996703

Étude théorique de divers processus atomiques de croissance sur les surfaces métalliques

M.C. Desjonquères1 and D. Spanjaard2

1  CEA/DSM/DRECAM/SRSIM, CE de Saclay, 91191 Gif-sur-Yvette, France
2  Laboratoire de Physique des Solides, Bâtiment 510, Université Paris-Sud, Centre d'Orsay, 91405 Orsay, France


Résumé
L'intérêt technologique des matériaux multicouches et la nécessité de comprendre, et si possible de maîtriser, les processus atomiques qui se produisent lors de leur élaboration a suscité depuis quelques années un regain d'activité sur les mécanismes élémentaires intervenant dans la croissance cristalline. Ces processus atomiques sont nombreux. Pour former une nouvelle couche à faible sursaturation, les atomes venant de la vapeur doivent d'abord se condenser sur le substrat, puis diffusent sur la surface et soit s'incorporent aux marches, soit se réévaporent. A sursaturation plus élevée, des îlots se forment par nucléation sur les terrasses du cristal et deviennent eux-mêmes des centres pour la croissance. A chacun de ces processus sont associées des énergies caractéristiques qu'il convient de déterminer si l'on veut faire des études statistiques. Etant donné la réduction ou même l'absence de symétrie des systèmes considérés, on a le plus souvent recours à des méthodes approchées pour calculer ces énergies : théorie du milieu effectif, méthode des liaisons fortes, "Embedded Atom Model" (EAM)... Après avoir décrit brièvement ces méthodes, nous les illustrerons sur une série d'exemples : détermination du site d'adsorption et stabilité des petits îlots de deux et trois atomes sur la surface (111) des métaux de transition cubiques à faces centrées, mécanismes de diffusion superficielle, influence de la présence de marches sur la diffusion.



© EDP Sciences 1996