Issue
J. Phys. IV France
Volume 133, June 2006
Page(s) 313 - 315
DOI https://doi.org/10.1051/jp4:2006133062
Published online 16 June 2006
Inertial Fusion Sciences and Applications 2005
J.-C. Gauthier, et al.
J. Phys. IV France 133 (2006) 313-315

DOI: 10.1051/jp4:2006133062

Hard X-ray and hot electron environment in vacuum hohlraums at NIF

J.W. McDonald1, L.J. Suter1, O.L. Landen1, J.M. Foster1, 0, J.R. Celeste1, J.P. Holder1, E.L. Dewald1, M.B. Schneider1, D.E. Hinkel1, R.L. Kauffman1, L.J. Atherton1, R.E. Bonanno1, S.N. Dixit1, D.C. Eder1, C.A. Haynam1, D.H. Kalantar1, A.E. Koniges1, F.D. Lee1, B.J. MacGowan1, K.R. Manes1, D.H. Munro1, J.R. Murray1, M.J. Shaw1, R.M. Stevenson1, T.G. Parham1, B.M. Van Wonterghem1, R.J. Wallace1, P.J. Wegner1, P.K. Whitman1, B.K. Young1, B.A. Hammel1 and E.I. Moses1

1  Lawrence Livermore National Laboratory, PO Box 808, Livermore, CA 94550, USA


Abstract
Time resolved hard x-ray images (hv > 9 keV) and time integrated hard x-ray spectra (hv = 18-150 keV) from vacuum hohlraums irradiated with four 351 nm wavelength NIF laser beams are presented as a function of hohlraum size and laser power and duration. The hard x-ray images and spectra provide insight into the time evolution of the hohlraum plasma filling and the production of hot electrons. The fraction of laser energy detected as hot electrons (f $_{\rm hot})$ shows correlation with both laser intensity and with an analytic plasma filling model.



© EDP Sciences 2006