Issue |
J. Phys. IV France
Volume 08, Number PR6, October 1998
International Conference on Disorder and Chaos in honour of Giovanni Paladin
|
|
---|---|---|
Page(s) | Pr6-173 - Pr6-182 | |
DOI | https://doi.org/10.1051/jp4:1998623 |
International Conference on Disorder and Chaos in honour of Giovanni Paladin
J. Phys. IV France 08 (1998) Pr6-173-Pr6-182
DOI: 10.1051/jp4:1998623
1 Dipartimento di Fisica, via Irnerio 46, Bologna 40126, Italy, and INFN, Sezione di Bologna
2 Banksiel, Bia Meravigli 12/14, Milano, Italy
© EDP Sciences 1998
J. Phys. IV France 08 (1998) Pr6-173-Pr6-182
DOI: 10.1051/jp4:1998623
Action diffusion in sympletic and volume preserving maps
G. Turchetti1 and F. Davico Bonino21 Dipartimento di Fisica, via Irnerio 46, Bologna 40126, Italy, and INFN, Sezione di Bologna
2 Banksiel, Bia Meravigli 12/14, Milano, Italy
Abstract
Polynomial Hénon like symplectic maps are the basic models in nonlinear beam dynamics. The action-frequency map allows to analyze their network of resonances in action space and the Fokker-Planck equation is adequate to describe the diffusion in action space induced by a random perturbation. The changes introduced by noise correlations and the presence of resonant structures are outlined. The modulated standard map in a solid torus is a volume preserving map, which shares the basic features of volume preserving integrators of the magnetic field lines in a toroidal vessel. The scenario of diffusion for this map is briefly discussed.
© EDP Sciences 1998