Issue |
J. Phys. IV France
Volume 05, Number C6, Octobre 1995
Proceedings of the General Conference of the Human Capital and Mobility Network and INTAS NetworkNonlinear Phenomena in Microphysics of Collisionless Plasmas. Application to Space and Laboratory Plasmas |
|
---|---|---|
Page(s) | C6-131 - C6-136 | |
DOI | https://doi.org/10.1051/jp4:1995624 |
Proceedings of the General Conference of the Human Capital and Mobility Network and INTAS Network
Nonlinear Phenomena in Microphysics of Collisionless Plasmas. Application to Space and Laboratory Plasmas
J. Phys. IV France 05 (1995) C6-131-C6-136
DOI: 10.1051/jp4:1995624
1 Institut für Experimentalphysik Christian-Albrechts-Universität, Olshausenstrasse 40-60, 24098 Kiel, Germany
2 Laboratoire de Physique des Milieux Ionisés, URA 835 du CNRS, Université Henri Poincaré, B.P. 239, 54506 Vandoeuvre-lès-Nancy cedex, France
3 Equipe Turbulence Plasma, Institut Méditerranéen de Technologie, URA 773 du CNRS, Université de Provence, 13451 Marseille cedex 20, France
© EDP Sciences 1995
Nonlinear Phenomena in Microphysics of Collisionless Plasmas. Application to Space and Laboratory Plasmas
J. Phys. IV France 05 (1995) C6-131-C6-136
DOI: 10.1051/jp4:1995624
Nonlinear Dynamics and Chaos in Gas Discharge Systems
T. Klinger1, F. Greiner1, A. Latten1, A. Piel1, T. Pierre2, G. Bonhomme2, C. Arnas Capeau3, G. Bachet3 and F. Doveil31 Institut für Experimentalphysik Christian-Albrechts-Universität, Olshausenstrasse 40-60, 24098 Kiel, Germany
2 Laboratoire de Physique des Milieux Ionisés, URA 835 du CNRS, Université Henri Poincaré, B.P. 239, 54506 Vandoeuvre-lès-Nancy cedex, France
3 Equipe Turbulence Plasma, Institut Méditerranéen de Technologie, URA 773 du CNRS, Université de Provence, 13451 Marseille cedex 20, France
Abstract
This paper summarizes recent experimental work on nonlinear dynamical phenomena in gas discharge plasmas. As a relatively simple example, chaotic oscillations in low-pressure thermionic discharges are discussed in detail. Period doubling bifurcations and intermittency are clearly identified as standard routes to chaotic behaviour. Most of its dynamical features are well described by simple nonlinear oscillator models. In contrast, plasma waves are spatiotemporal phenomena and thus show a much richer dynamical behaviour. This is demonstrated for current-driven drift waves in a linear magnetized plasma. Probe arrays provide the required information about the time evolution of the azimuthal wave structure.
© EDP Sciences 1995