Numéro |
J. Phys. IV France
Volume 09, Numéro PR6, June 1999
International Conference on Coincidence Spectroscopy
|
|
---|---|---|
Page(s) | Pr6-71 - Pr6-74 | |
DOI | https://doi.org/10.1051/jp4:1999616 |
International Conference on Coincidence Spectroscopy
J. Phys. IV France 09 (1999) Pr6-71-Pr6-74
DOI: 10.1051/jp4:1999616
1 Laboratoire de Magnétisme de Bretagne, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, BP. 809, 29285 Brest cedex, France
2 CNRS, BP. 11-8281, Beirut, Lebanon
3 Laboratoire des Collisions Électroniques et Atomiques, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, BP. 809, 29285 Brest cedex, France
© EDP Sciences 1999
J. Phys. IV France 09 (1999) Pr6-71-Pr6-74
DOI: 10.1051/jp4:1999616
Parametric potential determination by the canonical function method
C. Tannous1, K. Fakhreddine2 and J. Langlois31 Laboratoire de Magnétisme de Bretagne, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, BP. 809, 29285 Brest cedex, France
2 CNRS, BP. 11-8281, Beirut, Lebanon
3 Laboratoire des Collisions Électroniques et Atomiques, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, BP. 809, 29285 Brest cedex, France
Abstract
The canonical function method (CFM) is a powerful means for solving the Radial Schrödinger Equation (RSE). The mathematical difficulty of the RSE lies in the fact it is a singular boundary value problem. The CFM turns it into a regular initial value problem and allows the full determination of the spectrum of the Schrödinger operator without calculating the eigenfunctions. Following the parametrisation suggested by Klapisch and Green-Sellin-Zachor we develop a CFM to optimise the potential parameters in order to reproduce the experimental Quantum Defect results for various Rydberg series of He, Ne and Ar as evaluated from Moore's data.
© EDP Sciences 1999