Numéro
J. Phys. IV France
Volume 133, June 2006
Page(s) 355 - 360
DOI https://doi.org/10.1051/jp4:2006133072
Publié en ligne 16 juin 2006
Inertial Fusion Sciences and Applications 2005
J.-C. Gauthier, et al.
J. Phys. IV France 133 (2006) 355-360

DOI: 10.1051/jp4:2006133072

High energy electron transport in solids

R.B. Stephens1, R.P.J. Snavely2, Y. Aglitskii3, K.U. Akli4, F. Amiranoff5, C. Andersen4, D. Batani6, S.D. Baton5, T. Cowan7, R.R. Freeman8, J.S. Green8, H. Habara9, T. Hall10, S.P. Hatchett2, D.S. Hey8, J.M. Hill8, J.L. Kaae1, M.H. Key2, J.A. King4, J.A. Koch2, R. Kodama11, M. Koenig5, K. Krushelnick12, K.L. Lancaster9, A.J. MacKinnon2, E. Martinolli5, C.D. Murphy9, M. Nakatsutsumi11, P. Norreys9, E. Perelli-Cippo13, M. Rabec Le Gloahec14, B. Remington2, C. Rousseaux14, J.J. Santos5, F. Scianitti13, C. Stoeckl6, M. Tabak2, K.A. Tanaka11, W. Theobald6, R. Town2, T. Yabuuchi11 and B. Zhang4

1  General Atomics, San Diego, CA, USA
2  Lawrence Livermore National Lab., Livermore, CA, USA
3  Science Applications International Corporation, MacLean, VA, USA
4  Department of Applied Sciences, University of California, Davis, CA, USA
5  Laboratoire pour l'Utilisation des Lasers Intenses, CNRS-CEA Université Paris VI, École Polytechnique, 91128 Palaiseau, France
6  Laboratory for Laser Energetics, Rochester, NY, USA
7  University of Nevada, Reno, NV, USA
8  The Ohio State University, Columbus, OH, USA
9  Central Laser Research Facility, Rutherford-Appleton Lab, Chilton, UK
10  Department of Physics, University of Essex, Colchester, UK
11  Institute for Laser Engineering, Osaka, Japan
12  Imperial College, London, UK
13  Dipartimento di Fisica "G. Ochialini", Università degli Studi di Milano-Bicocca and INFM, Milan, Italy
14  Commissariat à l'Énergie Atomique, 91680 Bruyères-le-Châtel, France


Abstract
With the addition of recent PW shots, the propagation of short-pulse laser generated electron beams have been studied using laser pulse energies from 30 J to 300 J, generating currents up to $\sim $15 MA in solid Al:Cu targets. This is $\sim $5% of the current that will be required in an ignition pulse. To this level, the current appears to simply scale with laser power, the propagation spread not change at all. The resistance of the aluminum does not seem to play a role in the propagation characteristics, though it might in setting the current starting parameters. We do find that at the highest currents parts of these targets reach temperatures high enough to modify the Cu-K $_{\alpha }$ emission spectrum rendering our Bragg imaging mirrors ineffective; spectrometers will be needed to collect data at these higher temperatures.



© EDP Sciences 2006