EDP Sciences Journals List
Free access
Issue J. Phys. IV France
Volume 103, février 2003
Page(s) III - IV

Neutrons et Matériaux
W. Paulus, J. Meinnel
J. Phys. IV France
103 (2003) III

Préface

Werner Paulus et Jean Meinnel

Résumé
En 1994, l'attribution du prix Nobel à Cliff Shull et Bert Brockhouse pour leurs travaux de pionniers pendant les années 50, concernant tant la diffusion élastique des neutrons que la diffusion inélastique, a été la reconnaissance éclatante de l'importance de la diffusion neutronique pour toute la communauté scientifique.

Le grand intérêt du neutron pour la recherche s'appuie principalement sur ses propriétés physiques particulières :

- les neutrons utilisés pour la caractérisation de la matière (et fournis en relativement grandes quantités par les réacteurs ou les sources à spallation) disposent de longueurs d'onde et d'énergies correspondant directement aux distances interatomiques et aux énergies d'agitation de la matière. Ainsi, par diffusion neutronique, on peut étudier en même temps la structure et le comportement dynamique de la matière ;

- le fait que le neutron soit doué d'un moment magnétique lui permet d'interagir avec tout atome porteur d'un moment magnétique. Ceci permet de caractériser intimement le comportement magnétique de la matière à l'échelle microscopique ;

- la possibilité de pouvoir varier facilement le contraste d'un même élément en utilisant ses différents isotopes fait du neutron un outil irremplaçable en chimie et physique du solide ainsi qu'en biologie et matière molle ;

- enfin, n'ayant pas de charge électrique, les neutrons peuvent pénétrer la matière sans être absorbés significativement, ce qui rend possible une caractérisation non destructive des contraintes et textures sur de grosses pièces des matériaux.

Toutes les qualités des neutrons mentionnées ci-dessus permettent de comprendre l'importance de la diffusion neutronique pour des domaines très nombreux et très différents à la fois en recherche fondamentale mais aussi pour des applications industrielles. L'utilisation de l'outil-neutron demande toutefois non seulement une bonne connaissance des différents mécanismes d'interaction entre le neutron et la matière, mais également une haute spécificité dans la conception et l'utilisation des diffractomètres et spectromètres neutroniques. Pour ces raisons, l'accès aux neutrons est souvent limité, sinon réservé à des spécialistes, ce qui freine tout naturellement l'utilisation par des chercheurs non familiarisés à ce domaine.

Pour combattre ce déficit d'information et cet état de fait, en accord avec de nombreux collègues Rennais, nous avons proposé à la Société Française de Neutronique d'organiser une École d'été qui s'adresse plus spécialement à de non-spécialistes de la diffusion neutronique. Le public visé concernait donc à la fois les chercheurs confirmés mais peu familiarisés avec le domaine neutronique, mais aussi les jeunes chercheurs dès le niveau doctorant. En effet pour ces derniers, l'utilisation des "grands instruments" s'avère nécessaire pour qu'ils soient à la hauteur de leur sujet de thèse. Pour cette raison, il était évident d'intégrer cette École d'été dans le programme de l'École Doctorale "Sciences des Matériaux" de l'Université de Rennes 1 qui rassemble chimistes, physiciens et géologues. Dans le même contexte, notre intérêt était de proposer un large spectre de cours couvrant la diversité des applications de la diffusion neutronique dans les différents domaines de recherche en chimie et physique des matériaux, en sciences de la terre ainsi qu'en sciences pour l'ingénieur. Un deuxième but était de montrer de plus la complémentarité des neutrons et des rayons X et plus spécifiquement des X produits par rayonnement synchrotron.

Dans l'avenir, nous sommes persuadés que la diffusion neutronique va jouer un rôle clé pour le développement de nouveaux matériaux et de leur caractérisation. Dans cette optique, des efforts considérables ont été déjà engagés aux États-Unis ainsi qu'au Japon où deux nouvelles sources de neutrons sont en cours de construction. Du point de vue européen, si les sources de l'ILL et d'ISIS peuvent encore être considérées comme des leaders au point de vue mondial, il est évidemment souhaitable que la nouvelle source neutronique à spallation (European Spallation Source : ESS) soit rapidement réalisée. Aujourd'hui ce projet est bien avancé, cette source devrait dépasser le flux des sources actuelles par près de deux ordres de grandeur et ainsi de maintenir au meilleur niveau les compétences Européennes. Il est évident qu'une utilisation efficace et intelligente des sources existantes, mais aussi de celles de la nouvelle génération, implique une certaine infrastructure nationale tant au niveau de la conception, de la réalisation que du fonctionnement des différents spectromètres. Ceci implique un très fort engagement des universités dans les différents projets de recherche. Le devoir des universités qui en résulte est donc d'intégrer l'utilisation des "grands instruments" dans leur programme d'enseignement. Dans ce sens, nous souhaitons que ce cours, entièrement rédigé en français, contribue à la fois à aider les chercheurs "non spécialistes" à accéder plus facilement au domaine neutronique, mais aussi à servir de base aux enseignants pour l'organisation et la préparation de leurs cours.

Nous tenons à remercier tous les collègues qui ont accepté de rédiger de façon détaillée les cours qu'ils avaient présentés oralement dans la grande salle du VVF de Trégastel, ainsi que toutes les personnes qui ont contribué à la réussite du séjour ou à la réalisation de ce fascicule. Nous gardons un excellent souvenir de l'atmosphère de l'École qui a eu lieu à Trégastel, en plein centre de la côte de granite rose en Bretagne, en mai 2001 et était jumelée avec les Journées de la diffusion neutronique, elles aussi organisées sous l'égide de la SFN.

Nous souhaitons que la lecture de cet ouvrage soit utile à un maximum de chercheurs.



© EDP Sciences 2003