La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
M. Hokka , V.-T. Kuokkala , S. Curtze , T. Vuoristo , M. Apostol
J. Phys. IV France, 134 (2006) 1301-1306
Publié en ligne : 2006-07-26
Citations de cet article :
13 articles
The Taylor–Quinney coefficients and strain hardening of commercially pure titanium, iron, copper, and tin in high rate compression
G.C. Soares and M. Hokka International Journal of Impact Engineering 103940 (2021) https://doi.org/10.1016/j.ijimpeng.2021.103940
Impact wear and mechanical behavior of steels at subzero temperatures
Kati Valtonen, Vilma Ratia, Karthik Ram Ramakrishnan, et al. Tribology International 129 476 (2019) https://doi.org/10.1016/j.triboint.2018.08.016
Interpretation of quasi-static and dynamic tensile behavior by digital image correlation technique in TWinning Induced Plasticity (TWIP) and low-carbon steel sheets
Minju Kang, Jaeyeong Park, Seok Su Sohn, et al. Materials Science and Engineering: A (2017) https://doi.org/10.1016/j.msea.2017.03.076
Strain hardening behavior of TWIP steel in plastic deformation with temperature
W J Dan, F Liu and W G Zhang Modelling and Simulation in Materials Science and Engineering 23 (2) 025011 (2015) https://doi.org/10.1088/0965-0393/23/2/025011
The dynamic behaviour of a twinning induced plasticity steel
K.M. Rahman, V.A. Vorontsov and D. Dye Materials Science and Engineering: A 589 252 (2014) https://doi.org/10.1016/j.msea.2013.09.081
Stress-strain Response for Twinning-induced Plasticity Steel with Temperature
Fei Liu, Weigang Zhang and Wenjiao Dan Procedia Engineering 81 1330 (2014) https://doi.org/10.1016/j.proeng.2014.10.152
Strain Hardening Model of Twinning Induced Plasticity Steel at Different Temperatures
F. Liu, W.J. Dan and W.G. Zhang Materials & Design (2014) https://doi.org/10.1016/j.matdes.2014.10.008
Dynamic Behavior and High Speed Machining of Ti-6246 and Alloy 625 Superalloys: Experimental and Modeling Approaches
M. Hokka, D. Gomon, A. Shrot, et al. Experimental Mechanics 54 (2) 199 (2014) https://doi.org/10.1007/s11340-013-9793-7
EFFECT OF STRAIN RATE ON MICROSTRUCTURE EVOLUTION AND MECHANICAL BEHAVIOR OF A LOW C HIGH Mn TRIP/TWIP STEELS
Zhiqiang WU, Zhengyou TANG, Huaying LI and Haidong ZHANG ACTA METALLURGICA SINICA 48 (5) 593 (2013) https://doi.org/10.3724/SP.J.1037.2011.00590
Low-cycle fatigue behavior of a high manganese austenitic twin-induced plasticity steel
Pengcheng Guo, Lihe Qian, Jiangying Meng, Fucheng Zhang and Laifeng Li Materials Science and Engineering: A 584 133 (2013) https://doi.org/10.1016/j.msea.2013.07.020
Effects of Different Manganese Content on Microstructures and Properties of TWIP Steel
Li Hui Wang, Di Tang, Hai Tao Jiang, Ji Bin Liu and Yu Chen Advanced Materials Research 399-401 254 (2011) https://doi.org/10.4028/www.scientific.net/AMR.399-401.254
Crystal Plasticity Finite Element Methods
Crystal Plasticity Finite Element Methods 173 (2010) https://doi.org/10.1002/9783527631483.refs
Interaction of Cracks and Dislocations with Grain Boundaries Investigated by Focus Ion Beam Microscopy and Nanoindentation Technique
Horst Vehoff, Michael Marx, Markus Welsch, et al. Materials Testing 50 (3) 118 (2008) https://doi.org/10.3139/120.100868