La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
Y. Sutou , T. Omori , J.J. Wang , R. Kainuma , K. Ishida
J. Phys. IV France, 112 (2003) 511-514
Citations de cet article :
25 articles
High-Number-Density Coherent Nanoprecipitates Induce Superelasticity in a Fe-Ni-Co-Al-Based Alloy
Xiyu Wang, Yang Zhang, Zhongwu Zhang, Junpeng Li, Liyuan Liu, Weiguo Jiang and Kang Du JOM 76 (5) 2526 (2024) https://doi.org/10.1007/s11837-024-06469-7
Enabling shape memory effect wires for acting like superelastic wires in terms of showing recentering capacity in mortar beams
Eunsoo Choi, Alireza Ostadrahimi, Yeonseong Lee, Jong-Su Jeon and Ijung Kim Construction and Building Materials 319 126047 (2022) https://doi.org/10.1016/j.conbuildmat.2021.126047
Deformation Behaviour of Cu–Al–Mn Alloys under the Effect of Temperature and Mechanical Stresses
A. N. Titenko, L. D. Demchenko, A. Ye. Perekos, et al. METALLOFIZIKA I NOVEISHIE TEKHNOLOGII 42 (4) 531 (2020) https://doi.org/10.15407/mfint.42.04.0531
Pathways Towards Grain Boundary Engineering for Improved Structural Performance in Polycrystalline Co–Ni–Ga Shape Memory Alloys
C. Lauhoff, M. Vollmer, P. Krooß, et al. Shape Memory and Superelasticity 5 (1) 73 (2019) https://doi.org/10.1007/s40830-018-00204-3
The effects of cold rolling and the subsequent heat treatments on the shape memory and the superelasticity characteristics of Cu73Al16Mn11 shape memory alloy
N Babacan, J Ma, O S Turkbas, I Karaman and B Kockar Smart Materials and Structures 27 (1) 015028 (2018) https://doi.org/10.1088/1361-665X/aa9cc5
Shaking table tests of steel frame with superelastic Cu–Al–Mn SMA tension braces
Yoshikazu Araki, Kshitij C. Shrestha, Nao Maekawa, et al. Earthquake Engineering & Structural Dynamics 45 (2) 297 (2016) https://doi.org/10.1002/eqe.2659
Effect of Annealing in Magnetic Field on Ferromagnetic Nanoparticle Formation in Cu-Al-Mn Alloy with Induced Martensite Transformation
Anatoliy Titenko and Lesya Demchenko Nanoscale Research Letters 11 (1) (2016) https://doi.org/10.1186/s11671-016-1453-2
Cyclic degradation in bamboo-like Fe–Mn–Al–Ni shape memory alloys — The role of grain orientation
M. Vollmer, P. Krooß, M.J. Kriegel, et al. Scripta Materialia 114 156 (2016) https://doi.org/10.1016/j.scriptamat.2015.12.007
Characterization of Deformation Behavior of Individual Grains in Polycrystalline Cu-Al-Mn Superelastic Alloy Using White X-ray Microbeam Diffraction
Eui Kwon, Shigeo Sato, Shun Fujieda, et al. Metals 5 (4) 1845 (2015) https://doi.org/10.3390/met5041845
Feasibility of tension braces using Cu-Al-Mn superelastic alloy bars
Yoshikazu Araki, Nao Maekawa, Kshitij C. Shrestha, et al. Structural Control and Health Monitoring 21 (10) 1304 (2014) https://doi.org/10.1002/stc.1644
Feasibility of externally activated self-repairing concrete with epoxy injection network and Cu-Al-Mn superelastic alloy reinforcing bars
Sanjay Pareek, Kshitij C Shrestha, Yusuke Suzuki, et al. Smart Materials and Structures 23 (10) 105027 (2014) https://doi.org/10.1088/0964-1726/23/10/105027
Feasibility of Cu–Al–Mn superelastic alloy bars as reinforcement elements in concrete beams
Kshitij C Shrestha, Yoshikazu Araki, Takuya Nagae, et al. Smart Materials and Structures 22 (2) 025025 (2013) https://doi.org/10.1088/0964-1726/22/2/025025
Effectiveness of superelastic bars for seismic rehabilitation of clay‐unit masonry walls
Kshitij C. Shrestha, Yoshikazu Araki, Takuya Nagae, et al. Earthquake Engineering & Structural Dynamics 42 (5) 725 (2013) https://doi.org/10.1002/eqe.2241
Rate-dependent response of superelastic Cu–Al–Mn alloy rods to tensile cyclic loads
Yoshikazu Araki, Nao Maekawa, Toshihiro Omori, et al. Smart Materials and Structures 21 (3) 032002 (2012) https://doi.org/10.1088/0964-1726/21/3/032002
Shape memory properties of highly textured Cu–Al–Ni–(Ti) alloys
C.E. Sobrero, P. La Roca, A. Roatta, R.E. Bolmaro and J. Malarría Materials Science and Engineering: A 536 207 (2012) https://doi.org/10.1016/j.msea.2011.12.104
Potential of superelastic Cu–Al–Mn alloy bars for seismic applications
Y. Araki, T. Endo, T. Omori, et al. Earthquake Engineering & Structural Dynamics 40 (1) 107 (2011) https://doi.org/10.1002/eqe.1029
Superplasticity of Cu-Al-Mn-Ni Shape Memory Alloy
Toshihiro Omori, Naoki Koeda, Yuji Sutou, Ryosuke Kainuma and Kiyohito Ishida MATERIALS TRANSACTIONS 48 (11) 2914 (2007) https://doi.org/10.2320/matertrans.D-MRA2007879
High maneuverability guidewire with functionally graded properties using new superelastic alloys
Y. Sutou, K. Yamauchi, M. Suzuki, et al. Minimally Invasive Therapy & Allied Technologies 15 (4) 204 (2006) https://doi.org/10.1080/13645700600836109
Stress-induced martensitic transformation in polycrystalline aged Cu–Al–Mn alloys
L.E. Kozlova and A.N. Titenko Materials Science and Engineering: A 438-440 738 (2006) https://doi.org/10.1016/j.msea.2006.02.159
Effects of grain size and texture on damping properties of Cu–Al–Mn-based shape memory alloys
Y. Sutou, T. Omori, N. Koeda, R. Kainuma and K. Ishida Materials Science and Engineering: A 438-440 743 (2006) https://doi.org/10.1016/j.msea.2006.02.085
Copper
Y. Sutou, T. Omori, M. Suzuki, et al. Copper 307 (2006) https://doi.org/10.1002/9783527610327.ch41
Martensitic transition and superelasticity of Co–Ni–Al ferromagnetic shape memory alloys with β+γ two-phase structure
Y. Tanaka, K. Oikawa, Y. Sutou, et al. Materials Science and Engineering: A 438-440 1054 (2006) https://doi.org/10.1016/j.msea.2006.05.021
Damping Properties of Ductile Cu-Al-Mn-Based Shape Memory Alloys
Naoki Koeda, Toshihiro Omori, Yuji Sutou, et al. MATERIALS TRANSACTIONS 46 (1) 118 (2005) https://doi.org/10.2320/matertrans.46.118
Development of medical guide wire of Cu‐Al‐Mn–base superelastic alloy with functionally graded characteristics
Yuji Sutou, Toshihiro Omori, Akihisa Furukawa, et al. Journal of Biomedical Materials Research Part B: Applied Biomaterials 69B (1) 64 (2004) https://doi.org/10.1002/jbm.b.10079
Characteristics of Cu–Al–Mn-based shape memory alloys and their applications
Y. Sutou, T. Omori, J.J. Wang, R. Kainuma and K. Ishida Materials Science and Engineering: A 378 (1-2) 278 (2004) https://doi.org/10.1016/j.msea.2003.12.048