Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

High-Number-Density Coherent Nanoprecipitates Induce Superelasticity in a Fe-Ni-Co-Al-Based Alloy

Xiyu Wang, Yang Zhang, Zhongwu Zhang, Junpeng Li, Liyuan Liu, Weiguo Jiang and Kang Du
JOM 76 (5) 2526 (2024)
https://doi.org/10.1007/s11837-024-06469-7

Enabling shape memory effect wires for acting like superelastic wires in terms of showing recentering capacity in mortar beams

Eunsoo Choi, Alireza Ostadrahimi, Yeonseong Lee, Jong-Su Jeon and Ijung Kim
Construction and Building Materials 319 126047 (2022)
https://doi.org/10.1016/j.conbuildmat.2021.126047

Deformation Behaviour of Cu–Al–Mn Alloys under the Effect of Temperature and Mechanical Stresses

A. N. Titenko, L. D. Demchenko, A. Ye. Perekos, et al.
METALLOFIZIKA I NOVEISHIE TEKHNOLOGII 42 (4) 531 (2020)
https://doi.org/10.15407/mfint.42.04.0531

Pathways Towards Grain Boundary Engineering for Improved Structural Performance in Polycrystalline Co–Ni–Ga Shape Memory Alloys

C. Lauhoff, M. Vollmer, P. Krooß, et al.
Shape Memory and Superelasticity 5 (1) 73 (2019)
https://doi.org/10.1007/s40830-018-00204-3

The effects of cold rolling and the subsequent heat treatments on the shape memory and the superelasticity characteristics of Cu73Al16Mn11 shape memory alloy

N Babacan, J Ma, O S Turkbas, I Karaman and B Kockar
Smart Materials and Structures 27 (1) 015028 (2018)
https://doi.org/10.1088/1361-665X/aa9cc5

Shaking table tests of steel frame with superelastic Cu–Al–Mn SMA tension braces

Yoshikazu Araki, Kshitij C. Shrestha, Nao Maekawa, et al.
Earthquake Engineering & Structural Dynamics 45 (2) 297 (2016)
https://doi.org/10.1002/eqe.2659

Effect of Annealing in Magnetic Field on Ferromagnetic Nanoparticle Formation in Cu-Al-Mn Alloy with Induced Martensite Transformation

Anatoliy Titenko and Lesya Demchenko
Nanoscale Research Letters 11 (1) (2016)
https://doi.org/10.1186/s11671-016-1453-2

Characterization of Deformation Behavior of Individual Grains in Polycrystalline Cu-Al-Mn Superelastic Alloy Using White X-ray Microbeam Diffraction

Eui Kwon, Shigeo Sato, Shun Fujieda, et al.
Metals 5 (4) 1845 (2015)
https://doi.org/10.3390/met5041845

Feasibility of tension braces using Cu-Al-Mn superelastic alloy bars

Yoshikazu Araki, Nao Maekawa, Kshitij C. Shrestha, et al.
Structural Control and Health Monitoring 21 (10) 1304 (2014)
https://doi.org/10.1002/stc.1644

Feasibility of externally activated self-repairing concrete with epoxy injection network and Cu-Al-Mn superelastic alloy reinforcing bars

Sanjay Pareek, Kshitij C Shrestha, Yusuke Suzuki, et al.
Smart Materials and Structures 23 (10) 105027 (2014)
https://doi.org/10.1088/0964-1726/23/10/105027

Feasibility of Cu–Al–Mn superelastic alloy bars as reinforcement elements in concrete beams

Kshitij C Shrestha, Yoshikazu Araki, Takuya Nagae, et al.
Smart Materials and Structures 22 (2) 025025 (2013)
https://doi.org/10.1088/0964-1726/22/2/025025

Effectiveness of superelastic bars for seismic rehabilitation of clay‐unit masonry walls

Kshitij C. Shrestha, Yoshikazu Araki, Takuya Nagae, et al.
Earthquake Engineering & Structural Dynamics 42 (5) 725 (2013)
https://doi.org/10.1002/eqe.2241

Rate-dependent response of superelastic Cu–Al–Mn alloy rods to tensile cyclic loads

Yoshikazu Araki, Nao Maekawa, Toshihiro Omori, et al.
Smart Materials and Structures 21 (3) 032002 (2012)
https://doi.org/10.1088/0964-1726/21/3/032002

Shape memory properties of highly textured Cu–Al–Ni–(Ti) alloys

C.E. Sobrero, P. La Roca, A. Roatta, R.E. Bolmaro and J. Malarría
Materials Science and Engineering: A 536 207 (2012)
https://doi.org/10.1016/j.msea.2011.12.104

Potential of superelastic Cu–Al–Mn alloy bars for seismic applications

Y. Araki, T. Endo, T. Omori, et al.
Earthquake Engineering & Structural Dynamics 40 (1) 107 (2011)
https://doi.org/10.1002/eqe.1029

High maneuverability guidewire with functionally graded properties using new superelastic alloys

Y. Sutou, K. Yamauchi, M. Suzuki, et al.
Minimally Invasive Therapy & Allied Technologies 15 (4) 204 (2006)
https://doi.org/10.1080/13645700600836109

Stress-induced martensitic transformation in polycrystalline aged Cu–Al–Mn alloys

L.E. Kozlova and A.N. Titenko
Materials Science and Engineering: A 438-440 738 (2006)
https://doi.org/10.1016/j.msea.2006.02.159

Effects of grain size and texture on damping properties of Cu–Al–Mn-based shape memory alloys

Y. Sutou, T. Omori, N. Koeda, R. Kainuma and K. Ishida
Materials Science and Engineering: A 438-440 743 (2006)
https://doi.org/10.1016/j.msea.2006.02.085

Martensitic transition and superelasticity of Co–Ni–Al ferromagnetic shape memory alloys with β+γ two-phase structure

Y. Tanaka, K. Oikawa, Y. Sutou, et al.
Materials Science and Engineering: A 438-440 1054 (2006)
https://doi.org/10.1016/j.msea.2006.05.021

Development of medical guide wire of Cu‐Al‐Mn–base superelastic alloy with functionally graded characteristics

Yuji Sutou, Toshihiro Omori, Akihisa Furukawa, et al.
Journal of Biomedical Materials Research Part B: Applied Biomaterials 69B (1) 64 (2004)
https://doi.org/10.1002/jbm.b.10079

Characteristics of Cu–Al–Mn-based shape memory alloys and their applications

Y. Sutou, T. Omori, J.J. Wang, R. Kainuma and K. Ishida
Materials Science and Engineering: A 378 (1-2) 278 (2004)
https://doi.org/10.1016/j.msea.2003.12.048