Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

High Surface Area Assemblies of Gold Nanoparticles on Hydrophilic Carbon Fiber Paper with Ionomer Overlayers for Aqueous CO2 Reduction Electrocatalysis to Clean Syngas

Ryland C. Forsythe, Connor P. Cox, Madeleine K. Wilsey, Wanqing Yu and Astrid M. Müller
Topics in Catalysis 67 (5-8) 344 (2024)
https://doi.org/10.1007/s11244-023-01850-3

Perfluorosulfonic Acid Polymer Membranes: Microstructure and Basic Functional Properties

E. Yu. Safronova and A. A. Lysova
Мембраны и мембранные технологии 13 (6) 435 (2023)
https://doi.org/10.31857/S221811722306007X

Development of Screen-Printable Nafion Dispersion for Electrochemical Sensor

Zun Chen, Rishi Patel, Jacob Berry, et al.
Applied Sciences 12 (13) 6533 (2022)
https://doi.org/10.3390/app12136533

Stability evaluation of earth‐abundant metal‐based polyoxometalate electrocatalysts for oxygen evolution reaction towards industrial PEM electrolysis at high current densities

Kim‐Marie Vetter, Camila Aring da Silva Ramos Mauro, David Reinisch, et al.
Electrochemical Science Advances 2 (3) (2022)
https://doi.org/10.1002/elsa.202100073

Electrochemical CO2 Reduction on Polycrystalline Copper by Modulating Proton Transfer with Fluoropolymer Composites

Hanqing Pan and Christopher J. Barile
ACS Applied Energy Materials 5 (4) 4712 (2022)
https://doi.org/10.1021/acsaem.2c00136

Electrochemical CO2 Reduction on Zinc and Brass with Modulated Proton Transfer Using Membrane-Modified Electrodes

Hanqing Pan, Tania Akter and Christopher J. Barile
ACS Applied Energy Materials 5 (10) 12860 (2022)
https://doi.org/10.1021/acsaem.2c02468

Exclusion Zone Phenomena in Water—A Critical Review of Experimental Findings and Theories

Daniel C. Elton, Peter D. Spencer, James D. Riches and Elizabeth D. Williams
International Journal of Molecular Sciences 21 (14) 5041 (2020)
https://doi.org/10.3390/ijms21145041

Thermal stability of end‐capped and linear sulfonated polyimides, sulfonated polystyrene, and Nafion 117

Chenliang Gong, Laura Pinatti, Gary Lavigne, Montgomery T. Shaw and Daniel A. Scola
Journal of Applied Polymer Science 135 (3) (2018)
https://doi.org/10.1002/app.45694

Membrane architecture with ion-conducting channels through swift heavy ion induced graft copolymerization

V. Sproll, M. Handl, R. Hiesgen, et al.
Journal of Materials Chemistry A 5 (47) 24826 (2017)
https://doi.org/10.1039/C7TA07323B

Morphology Effect on Proton Dynamics in Nafion®117 and Sulfonated Polyether Ether Ketone

Jun Xing Leong, Wilson Agerico Diño, Azizan Ahmad, Wan Ramli Wan Daud and Hideaki Kasai
Journal of the Physical Society of Japan 85 (9) 094803 (2016)
https://doi.org/10.7566/JPSJ.85.094803

Electrocatalytic Reduction of CO2at Au Nanoparticle Electrodes: Effects of Interfacial Chemistry on Reduction Behavior

Evan Andrews, Sai Katla, Challa Kumar, et al.
Journal of The Electrochemical Society 162 (12) F1373 (2015)
https://doi.org/10.1149/2.0541512jes

Properties and morphology study of proton exchange membranes fabricated from the pendant sulfonated poly(arylene ether ketone) copolymers composed of hydrophobic and hydrophilic multi-blocks for fuel cell

Kyuhyun Kang, Byungsan Kwon, Shin Woo Choi, Jongwook Lee and Dukjoon Kim
International Journal of Hydrogen Energy 40 (46) 16443 (2015)
https://doi.org/10.1016/j.ijhydene.2015.10.017

Proton conductivity of perfluorosulfonate ionomers at high temperature and high relative humidity

Bruno R. Matos, Cleverson A. Goulart, Elisabete I. Santiago, R. Muccillo and Fabio C. Fonseca
Applied Physics Letters 104 (9) (2014)
https://doi.org/10.1063/1.4867351

Controlling Crystallinity in Graft Ionomers, and Its Effect on Morphology, Water Sorption, and Proton Conductivity of Graft Ionomer Membranes

Ami C. C. Yang, Rasoul Narimani, Zhaobin Zhang, Barbara J. Frisken and Steven Holdcroft
Chemistry of Materials 25 (9) 1935 (2013)
https://doi.org/10.1021/cm4005932

Proton exchange membranes for fuel cells operated at medium temperatures: Materials and experimental techniques

Anne-Claire Dupuis
Progress in Materials Science 56 (3) 289 (2011)
https://doi.org/10.1016/j.pmatsci.2010.11.001

Structure‐Morphology‐Property Relationships of Non‐Perfluorinated Proton‐Conducting Membranes

Timothy J. Peckham and Steven Holdcroft
Advanced Materials 22 (42) 4667 (2010)
https://doi.org/10.1002/adma.201001164

Main-chain, statistically sulfonated proton exchange membranes: the relationships of acid concentration and proton mobility to water content and their effect upon proton conductivity

Timothy J. Peckham, Jennifer Schmeisser, Marianne Rodgers and Steven Holdcroft
Journal of Materials Chemistry 17 (30) 3255 (2007)
https://doi.org/10.1039/b702339a

Investigation of Low-Temperature Proton Transport in Nafion Using Direct Current Conductivity and Differential Scanning Calorimetry

Eric L. Thompson, T. W. Capehart, Timothy J. Fuller and Jacob Jorne
Journal of The Electrochemical Society 153 (12) A2351 (2006)
https://doi.org/10.1149/1.2359699

Microscopic states of water and methanol in Nafion membrane observed by NMR micro imaging

Junichi Kawamura, Kazuki Hattori, Takahiro Hongo, et al.
Solid State Ionics 176 (31-34) 2451 (2005)
https://doi.org/10.1016/j.ssi.2005.06.025

High efficiency direct methanol fuel cell based on poly(styrenesulfonic) acid (PSSA)–poly(vinylidene fluoride) (PVDF) composite membranes

G.K. Surya Prakash, Marshall C. Smart, Qun-Jie Wang, et al.
Journal of Fluorine Chemistry 125 (8) 1217 (2004)
https://doi.org/10.1016/j.jfluchem.2004.05.019

Sulfonated Poly(ether ether ketone) Membranes for Direct Methanol Fuel Cells

B. Yang and A. Manthiram
Electrochemical and Solid-State Letters 6 (11) A229 (2003)
https://doi.org/10.1149/1.1613073

A statistical mechanical model for the calculation of the permittivity of water in hydrated polymer electrolyte membrane pores

Reginald Paul and Stephen J. Paddison
The Journal of Chemical Physics 115 (16) 7762 (2001)
https://doi.org/10.1063/1.1405851

Proton friction and diffusion coefficients in hydrated polymer electrolyte membranes: Computations with a non-equilibrium statistical mechanical model

Stephen J. Paddison, Reginald Paul and Thomas A. Zawodzinski
The Journal of Chemical Physics 115 (16) 7753 (2001)
https://doi.org/10.1063/1.1405850