La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
P. Scheidler , W. Kob , K. Binder
J. Phys. IV France, 10 PR7 (2000) Pr7-33-Pr7-36
Citations de cet article :
24 articles
Layering and packing in confined colloidal suspensions
Alejandro Villada-Balbuena, Gerhard Jung, Angel B. Zuccolotto-Bernez, Thomas Franosch and Stefan U. Egelhaaf Soft Matter 18 (25) 4699 (2022) https://doi.org/10.1039/D2SM00412G
Dynamical properties of densely packed confined hard-sphere fluids
Gerhard Jung, Michele Caraglio, Lukas Schrack and Thomas Franosch Physical Review E 102 (1) (2020) https://doi.org/10.1103/PhysRevE.102.012612
Dramatic Increase in Polymer Glass Transition Temperature under Extreme Nanoconfinement in Weakly Interacting Nanoparticle Films
Haonan Wang, Jyo Lyn Hor, Yue Zhang, et al. ACS Nano 12 (6) 5580 (2018) https://doi.org/10.1021/acsnano.8b01341
Relaxation processes and glass transition of confined polymer melts: A molecular dynamics simulation of 1,4-polybutadiene between graphite walls
M. Solar, K. Binder and W. Paul The Journal of Chemical Physics 146 (20) (2017) https://doi.org/10.1063/1.4975390
Non-monotonic effect of confinement on the glass transition
Fathollah Varnik and Thomas Franosch Journal of Physics: Condensed Matter 28 (13) 133001 (2016) https://doi.org/10.1088/0953-8984/28/13/133001
Glassy dynamics in confinement: Planar and bulk limits of the mode-coupling theory
Simon Lang, Rolf Schilling and Thomas Franosch Physical Review E 90 (6) (2014) https://doi.org/10.1103/PhysRevE.90.062126
Tagged-particle motion in a dense confined liquid
Simon Lang and Thomas Franosch Physical Review E 89 (6) (2014) https://doi.org/10.1103/PhysRevE.89.062122
Direct measurement of osmotic pressure via adaptive confinement of quasi hard disc colloids
Ian Williams, Erdal C. Oğuz, Paul Bartlett, Hartmut Löwen and C. Patrick Royall Nature Communications 4 (1) (2013) https://doi.org/10.1038/ncomms3555
Predicting How Nanoconfinement Changes the Relaxation Time of a Supercooled Liquid
Trond S. Ingebrigtsen, Jeffrey R. Errington, Thomas M. Truskett and Jeppe C. Dyre Physical Review Letters 111 (23) (2013) https://doi.org/10.1103/PhysRevLett.111.235901
Mode-coupling theory of the glass transition for confined fluids
Simon Lang, Rolf Schilling, Vincent Krakoviack and Thomas Franosch Physical Review E 86 (2) (2012) https://doi.org/10.1103/PhysRevE.86.021502
Glass Transition in Confined Geometry
Simon Lang, Vitalie Boţan, Martin Oettel, et al. Physical Review Letters 105 (12) (2010) https://doi.org/10.1103/PhysRevLett.105.125701
Glass transition and molecular mobility in polymer thin films
R. Inoue, T. Kanaya, K. Nishida, et al. Physical Review E 80 (3) (2009) https://doi.org/10.1103/PhysRevE.80.031802
Inelastic neutron scattering study of a glass-forming liquid in soft confinement
Reiner Zorn, Maria Mayorova, Dieter Richter and Bernhard Frick Soft Matter 4 (3) 522 (2008) https://doi.org/10.1039/b713465g
Effects of confinement on freezing and melting
C Alba-Simionesco, B Coasne, G Dosseh, et al. Journal of Physics: Condensed Matter 18 (6) R15 (2006) https://doi.org/10.1088/0953-8984/18/6/R01
Effects of confinement on material behaviour at the nanometre size scale
Mataz Alcoutlabi and Gregory B McKenna Journal of Physics: Condensed Matter 17 (15) R461 (2005) https://doi.org/10.1088/0953-8984/17/15/R01
On the Adam-Gibbs-Kirkpatrick-Thirumalai-Wolynes scenario for the viscosity increase in glasses
Jean-Philippe Bouchaud and Giulio Biroli The Journal of Chemical Physics 121 (15) 7347 (2004) https://doi.org/10.1063/1.1796231
Pressure, dynamics, and structure of a simple particle system confined in a soft nanopore
Bernhard Bandow, Siegfried Hess and Martin Kröger Physica A: Statistical Mechanics and its Applications 337 (3-4) 443 (2004) https://doi.org/10.1016/j.physa.2004.02.006
Effects of pinned particles on the structural relaxation of supercooled liquids
K Kim Europhysics Letters (EPL) 61 (6) 790 (2003) https://doi.org/10.1209/epl/i2003-00303-0
The mixed alkali effect revisited: the importance of ion–ion interactions
K.L. Ngai, Yong Wang and C.T. Moynihan Journal of Non-Crystalline Solids 307-310 999 (2002) https://doi.org/10.1016/S0022-3093(02)01565-X
Restricted dynamics of a supercooled liquid in a polymer matrix
C. Svanberg, R. Bergman, P. Jacobsson, and L. Börjesson Physical Review B 66 (5) 054304 (2002) https://doi.org/10.1103/PhysRevB.66.054304
Inelastic neutron scattering experiments on the dynamics of a glass-forming material in mesoscopic confinement
Reiner Zorn, Lutz Hartmann, Bernhard Frick, Dieter Richter and Friedrich Kremer Journal of Non-Crystalline Solids 307-310 547 (2002) https://doi.org/10.1016/S0022-3093(02)01485-0
Polymer films in the normal-liquid and supercooled state: a review of recent Monte Carlo simulation results
C. Mischler, J. Baschnagel and K. Binder Advances in Colloid and Interface Science 94 (1-3) 197 (2001) https://doi.org/10.1016/S0001-8686(01)00061-6
Glass transition and layering effects in confined water: A computer simulation study
P. Gallo, M. Rovere and E. Spohr The Journal of Chemical Physics 113 (24) 11324 (2000) https://doi.org/10.1063/1.1328073
The relaxation dynamics of a simple glass former confined in a pore
P Scheidler, W Kob and K Binder Europhysics Letters (EPL) 52 (3) 277 (2000) https://doi.org/10.1209/epl/i2000-00435-1