STUDY ON THE MOBILITY OF THE MARTENSITIC INTERPHASES ON THE Cu-Al-Ni SHAPE MEMORY ALLOYS

V. RECARTE, J. SAN JUAN, J. HERREROS and M.L. NO*

Dpto. Fisica Materia Condensada, Fac. Ciencias, Universidad del Pais Vasco. Apdo. 644, SP-48080 Bilbao, Spain
*Dpto. Fisica Aplicada II, Fac. Ciencias, Universidad del Pais Vasco. Apdo. 644, SP-48080 Bilbao, Spain

Abstract- In this work we have studied the mobility of martensitic interphases on Cu-Al-Ni policrystalline shape memory alloys with different concentrations. For that reason we have used a microdeformation technic very useful for the study of the policrystalline alloys. This microdeformation measurement has let us to observe two transformation stages linked to γ_1' and β_1' phases nucleation. Finally we discuss the effect of the internal stresses, stored during the quenching treatment, on the nucleation of the different martensitic phases.

1. Introduction

As it is well known martensitic transformation on the shape memory alloys is of a thermoelastic kind and it could be induced by an applied stress. A great number of studies have been carried out on the nucleation and growth of the different martensitic phases by tensile tests where the transformation was induced by stress. However, these studies have been mainly carried out on single crystals, due to the Cu-Al-Ni alloys tendency towards the intergranular fracture in the polycrystals. For that reason, we have used, in this work, a microdeformation technic that come to be very useful for the study of the policrystalline alloys. The use of stresses in the anelastic range allows us to follow the microdeformation associated to the martensitic transformation thermically induced, avoiding as well, the risk of intergranular fracture.

On the other side, in the last years, a great number of works have been published related to the influence of the quenching treatment on the nucleation of the martensitic phases, induced thermally or by stress. In this direction, we think that the influence of the internal stresses stored in the material during the quenching process has not been enough considered. And we also believe that, as discussed in this work, these stress can play a main role in the nucleation and growth on the different martensitic phases.

2. Experimental procedure

An alloy series with a fixed concentration of Al, and changing the Ni concentration was prepared from 99.99% Cu, 99.99% Al and 99.97% Ni, in an induction furnace in argon atmosphere. The obtained ingots were homogenized at 1000 °C during 6 hours in argon atmosphere. After the treatment, the concentrations of the alloys were analyzed in a plasma
emission spectrometer. Table 1 shows the analysis in weight percentage as well as the e/a relation of the alloys.

Table 1

<table>
<thead>
<tr>
<th>Alloy</th>
<th>wt% Cu</th>
<th>wt% Al</th>
<th>wt% Ni</th>
<th>e/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>81.3</td>
<td>13.75</td>
<td>4.95</td>
<td>1.526</td>
</tr>
<tr>
<td>B</td>
<td>81.8</td>
<td>13.75</td>
<td>4.39</td>
<td>1.528</td>
</tr>
<tr>
<td>C</td>
<td>82.9</td>
<td>13.75</td>
<td>3.30</td>
<td>1.534</td>
</tr>
</tbody>
</table>

To carry out the microdeformation measurements we cut 0.8*5*50 mm samples with a low speed diamond saw. In order to retain the β phase, the samples were annealed at 1123K during 30 minutes and quenched into water at 90 °C. Afterwards they were aged at 473K during 20 hours, in order to stabilize the atomic order and to reduce the internal stresses produced by quenching.

The microdeformation and modulus measurements have been carried out in an inverted torsion pendulum operating at 1 Hz in a temperature range between 80K and 750K and that allow us to work with a superposed static stress /1/. The measurements were carried out at a heating rate of 60K*h⁻¹ or 120K*h⁻¹ and with a oscillation amplitude of $\varepsilon_m=5*10^{-6}$. Static stresses with values between $\sigma_s=10^{-4}*\mu$ and $\sigma_s=2.5*10^{-5}*\mu$ were also used. Two kinds of microdeformation measurement have been carried out, depending on whether the static stress is applied, either in β phase or in martensitic phase. In the first case, afterward the static stress is applied in β phase, the temperature was decreased and increased again in order to measure the microdeformation during the transformation cycle. Finally the static stress is removed. In every time the microdeformation and the dynamic modulus is recorded Vs. temperature.

3. Experimental results

The microdeformation curves obtained under a static stress of $\sigma_s=10^{-4}*\mu$ ($\dot{\varepsilon}=120k/h$) are shown in Fig.1. The figures 1-a, 1-b and 1-c correspond to the sample A, B and C respectively. In the three cases the hysteresis associated to the transformation appears perfectly clear, being bigger for the samples A and B, than for sample C, presenting the last an hysteresis cycle much more narrow. The microdeformation curves of samples A and B show two microdeformation stages clearly identified, showing two maximums on its derivate curves. On the other side the sample C shows only one microdeformation stage with bigger slope than on the alloys A and B.

In order to study the effect of the stress on each one of the two stages observed, microdeformation measurements with different applied stresses have been carried out on sample A.

Fig. 2 shows the microdeformation curves of the alloy A, ($\dot{\varepsilon}=60k/h$), under two different static stresses of $\sigma_s=5*10^{-5}*\mu$ and $\sigma_s=2.8*10^{-5}*\mu$, Fig. 2-a and Fig. 2-b respectively. Again it is easy to appreciate two microdeformation stages, and the general shape of the microdeformation curves is the same as in the case before. However we can remark for a smaller static stress both microdeformation stages appear mark in a stronger way.
4. Discussion

The microdeformation measurements, carried out by the method described before, come to be a technic very useful for the study of the martensitic interphases mobility, as well during the nucleation of the martensitic plates as during the following growth when the transformation progresses.

Owing to the fact that the static stress we have used for the microdeformation measurements are smaller than the stresses necessary to produce the nucleation induced by stress, we can consider that the transformation temperatures obtained from the microdeformation experiences are the same as in the absence of stress. This can be perfectly justified if we compare the microdeformation and the internal friction results /2/. These measurements have allowed us to observe the presence of two microdeformation stages in the case of the alloys A and B, (Fig. 1-a and 1-b). The presence of two transformation stages has been also observed by internal friction measurements /2/ and it can be attributed to the coexistence of two martensitic phases γ_1' and β_1'. Indeed, the observation carried out by optic microscopy with a heating-cooling stage have allowed us to identify both phases γ_1' and β_1' /2/ agreeing with the observations done by Van Humbeeck et al. /3/ and Sakamoto and Shimizu /4/. Besides, for the concentration of the alloy A, Vasilenko et al./5/ phases diagram previews the coexistence of both phases γ_1' and β_1'. Though the alloy B has a much lower Ni concentration, it shows an e/a relation which is really closed to that of the alloy A, being located in the range in which a mixture of both phases γ_1' and β_1' can be expected.

In the case of the alloy C, with a very lower Ni concentration, only one microdeformation stage (Fig. 1-c) can be observed, due to the transformation of a unique martensitic phase. Though we have not identified it yet, it could be probably the γ_1' phase, because the e/a relation is higher than those of the alloys A and B /6,7/.

Transformation temperatures can be easily calculated from the derivates of the microdeformation curves, as well as the hysteresis width of the transformation cycle and the temperatures characteristic of the transformation T_0 /2/. Otherwise, it is necessary to notice that the transformation temperatures, when two stages are overlapped can not be determined with the same precission as the extreme ones. In table 2 we show the results obtained for the three alloys.

<table>
<thead>
<tr>
<th>Table 2</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Phase</th>
<th>T(K)</th>
<th>M_S</th>
<th>M_F</th>
<th>A_S</th>
<th>A_F</th>
<th>T_0</th>
<th>Hysteresis</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>γ_1'</td>
<td>297</td>
<td>216</td>
<td>245</td>
<td>327</td>
<td>277</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>A</td>
<td>β_1'</td>
<td>251</td>
<td>185</td>
<td>213</td>
<td>282</td>
<td>241</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>B</td>
<td>γ_1'</td>
<td>315</td>
<td>*</td>
<td>*</td>
<td>337</td>
<td>312</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>B</td>
<td>β_1'</td>
<td>*</td>
<td>227</td>
<td>242</td>
<td>*</td>
<td>*</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>416</td>
<td>352</td>
<td>331</td>
<td>425</td>
<td>391</td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

* Very difficult to determine
The presence of two stages, that is to say, the presence of the two martensitic phases depending on the concentration range, point out us how it is necessary to be careful when indicating the transformation temperatures of the alloy. This way, the diagram proposed by Xinming et al. /8/ consisting on the variation of the transformation temperatures along with the Ni concentration for 13.75 % Al, is, in our opinion, not correct because they do not have in mind the presence of two phases γ₁' and β₁' in the range of high Ni concentrations. Probably, it is the presence of the two phases, the responsible for the curvilinear aspect of the diagram. On the other side, the hysteresis cycle width decreases along with the decreasing of the Ni concentration (Fig. 1), becoming very narrow when we have a unique transformation stage (alloy C.). All this can be clearly seen on the derivate curves of the microdeformation measurements (Fig. 3), and it is also opossing Xinming et al. observations /8/.

The γ₁' and β₁' phases transformation, at temperatures which are so close, is coherent with the fact that the chemical free energy changes associated with the transformation of γ₁' and β₁' phases are very similar /9,10/. This double transformation has been also observed by Van Humbeeck et al. /3/ and by Friend et al. /11/. The difficulties this authors met when trying to observe the direct transformation β₁-γ₁', but that we have not met, can be analyzed in terms of the internal stresses of the alloy.

During the thermomechanical treatments, two operations are carried out usually:
- The hard hot-working (extrusion, rolling, etc.)
- The quenching process (into iced water or NaOH solution)

These operations can strongly increase the internal stresses of the material. Specially, in the case of quenching process, we have verified, that during the quenching process in NaOH solution an important number of intergranular fissures is produced, and it produces in many cases the fracture of the sample. Even in the case of iced water quenching, intergranular fissures have been observed. This mean that in the case of Cu-Al-Ni alloys, the quick cooling produces an increase of the internal stresses until so high levels as to fracture the alloy. In these conditions the internal stresses stored in the sample, make easier the martensite nucleation under stress, this is β₁', not allowing it to reach at β phase the transformation temperature of the γ₁' phase. At a given temperature, the nucleation of a phase, induced by stress, will be reached when the addition of the applied stress σₐ plus the internal stresses σ₁ reaches the value of the nucleation critical stress σc, that is when σc=σ₁+σₐ. This way, if the internal stresses, produced by cooling reach the stress σc of a martensitic phase, this will be immediatly induced by stress. This is probably the reason why Sakamoto and Shimizu /4/, depending on the quenching rate, obtain the β₁' phase or the γ₁' phase for the same alloy. The influence of the internal stresses has been analyzed in detail in a model developped in other paper /12/.

In our case the samples are as cast, the quenching has been more or less slow, besides we have carried out a long enough annealing treatment. For that reason, we can think that the internal stresses in our alloys are very weak and therefore, the γ₁' can be thermically induced. Along with the advance of the transformation the internal stresses get bigger owing to the accommodation of the deformation in a poli crystal (that in γ₁'
Fig. 1. Microdeformation curves obtained with a static stress of $\sigma_s=10^{-4}\mu$ applied in β phase when the temperature increases and decreases. (a) alloy A, (b) alloy B, (c) Alloy C.

Fig. 2. Microdeformation curves of alloy A when the temperature increases and decreases with a static stress of $\sigma_s=5\times10^{-5}\mu$ (a), and $\sigma_s=2.8\times10^{-5}\mu$ (b), applied in β phase.

Fig. 3. Derivate curves of the microdeformation curves shown in Fig. 1-a (1), and Fig. 1-c (2).
is produced by twinning), making more difficult the nucleation and growth of the γ_1' phase and making easier the nucleation and growth of the β_1' that accommodates a bigger shear deformation.

This nucleation and growth process of both kinds of martensite plates is very sensitive to the applied stress, just as it can be seen comparing the microdeformations on Fig. 1-a, Fig. 2-a and 2-b, that have been carried out over the same sample at different stresses. It can be observed how, the less is the applied stress the clearer way can be differenced both stages. All this seems to be owing to the fact that the temperatures characteristic T_0 (γ_1') and T_0 (β_1') are affected by the stress in a different way, and it can be linked to the mobility of the variants interphases of both kinds of martensite. These last matter must be cleared in further works. We can conclude that the internal stresses stored in the material during the quenching process can have a great influence on the nucleation and growth process of the γ_1' and β_1' phases, specially on those concentration ranges in which both phases can coexist.

In this direction, the effect of the annealing treatment at around 200°C would be not just to stabilize the atomic order degree, as it has been suggested by many authors, see /7/ for a review, but also to reduce and stabilize the internal stresses level existent in the material after the quenching.

5. Acknowledgment

This work has been carried out thanks to the economic support of the Universidad del País Vasco (project nº 063.310-0148/89) and the Dpto de Educación del Gobierno Vasco (project nº PGV9021.1). The authors thank both organizations for their colaboration.

References

/1/ OLEAGA A., HURTADO I., NO M.L., ESNOF C., SAN JUAN J. Anales de Física B 85 (1989) 373
/2/ RECARTE V., HERREROS J., NO M.L., SAN JUAN J. ECIFUAS-6, Mater. Sci. Forum, to be published
/6/ JELLISON J., KUER E.P., Trans. AIME, 233 (1965) 1694
/10/ FRIEND C.M., Scripta Met. 23 (1989) 1817
/12/ SAN JUAN J., RECARTE V., NO M.L.: to be published