Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Evaluation of CMAQ Coupled With a State‐of‐the‐Art Mercury Chemical Mechanism (CMAQ‐newHg‐Br)

Zhuyun Ye, Huiting Mao, Charles T. Driscoll, et al.
Journal of Advances in Modeling Earth Systems 10 (3) 668 (2018)
https://doi.org/10.1002/2017MS001161

Mass-Dependent and -Independent Fractionation of Mercury Isotope during Gas-Phase Oxidation of Elemental Mercury Vapor by Atomic Cl and Br

Guangyi Sun, Jonas Sommar, Xinbin Feng, et al.
Environmental Science & Technology 50 (17) 9232 (2016)
https://doi.org/10.1021/acs.est.6b01668

Air–snowpack exchange of bromine, ozone and mercury in the springtime Arctic simulated by the 1-D model PHANTAS – Part 2: Mercury and its speciation

K. Toyota, A. P. Dastoor and A. Ryzhkov
Atmospheric Chemistry and Physics 14 (8) 4135 (2014)
https://doi.org/10.5194/acp-14-4135-2014

Enhanced production of oxidised mercury over the tropical Pacific Ocean: a key missing oxidation pathway

F. Wang, A. Saiz-Lopez, A. S. Mahajan, J. C. Gómez Martín, D. Armstrong, M. Lemes, T. Hay and C. Prados-Roman
Atmospheric Chemistry and Physics 14 (3) 1323 (2014)
https://doi.org/10.5194/acp-14-1323-2014

Evaluation of discrepancy between measured and modelled oxidized mercury species

G. Kos, A. Ryzhkov, A. Dastoor, J. Narayan, A. Steffen, P. A. Ariya and L. Zhang
Atmospheric Chemistry and Physics 13 (9) 4839 (2013)
https://doi.org/10.5194/acp-13-4839-2013

Enhanced production of oxidised mercury over the tropical Pacific Ocean: a key missing oxidation pathway

F. Wang, A. Saiz-Lopez, A. S. Mahajan, et al.
Atmospheric Chemistry and Physics Discussions 13 (8) 21541 (2013)
https://doi.org/10.5194/acpd-13-21541-2013

Oxidation of gaseous elemental mercury in the presence of secondary organic aerosols

A.P. Rutter, K.M. Shakya, R. Lehr, J.J. Schauer and R.J. Griffin
Atmospheric Environment 59 86 (2012)
https://doi.org/10.1016/j.atmosenv.2012.05.009

How relevant is the deposition of mercury onto snowpacks? – Part 2: A modeling study

D. Durnford, A. Dastoor, A. Ryzhkov, et al.
Atmospheric Chemistry and Physics Discussions 12 (1) 2647 (2012)
https://doi.org/10.5194/acpd-12-2647-2012

Kinetic and Product Studies of the Reactions of NO2, with Hg0 in the Gas Phase in the Presence of Titania Micro-Particle Surfaces

Graydon Snider and Parisa Ariya
Water, Air, & Soil Pollution 223 (7) 4397 (2012)
https://doi.org/10.1007/s11270-012-1203-8

How relevant is the deposition of mercury onto snowpacks? – Part 2: A modeling study

D. Durnford, A. Dastoor, A. Ryzhkov, L. Poissant, M. Pilote and D. Figueras-Nieto
Atmospheric Chemistry and Physics 12 (19) 9251 (2012)
https://doi.org/10.5194/acp-12-9251-2012

The relative importance of chlorine and bromine radicals in the oxidation of atmospheric mercury at Barrow, Alaska

Chelsea R. Stephens, Paul B. Shepson, Alexandra Steffen, Jan W. Bottenheim, Jin Liao, L. Greg Huey, Eric Apel, Andy Weinheimer, Samuel R. Hall, Christopher Cantrell, Barkley C. Sive, D. J. Knapp, D. D. Montzka and Rebecca S. Hornbrook
Journal of Geophysical Research: Atmospheres 117 (D14) (2012)
https://doi.org/10.1029/2011JD016649

Measurement-based modelling of bromine-induced oxidation of mercury above the Dead Sea

E. Tas, D. Obrist, M. Peleg, V. Matveev, X. Faïn, D. Asaf and M. Luria
Atmospheric Chemistry and Physics 12 (5) 2429 (2012)
https://doi.org/10.5194/acp-12-2429-2012

Measurement-based modeling of bromine-induced oxidation of mercury above the Dead Sea

E. Tas, D. Obrist, M. Peleg, et al.
Atmospheric Chemistry and Physics Discussions 11 (8) 24467 (2011)
https://doi.org/10.5194/acpd-11-24467-2011

Environmental Chemistry and Toxicology of Mercury

Che‐Jen Lin, Pattaraporn Singhasuk and Simo O. Pehkonen
Environmental Chemistry and Toxicology of Mercury 111 (2011)
https://doi.org/10.1002/9781118146644.ch4

A review of uncertainties in atmospheric modeling of mercury chemistry I. Uncertainties in existing kinetic parameters – Fundamental limitations and the importance of heterogeneous chemistry

Mahamud Subir, Parisa A. Ariya and Ashu P. Dastoor
Atmospheric Environment 45 (32) 5664 (2011)
https://doi.org/10.1016/j.atmosenv.2011.04.046

An investigation of the origins of reactive gaseous mercury in the Mediterranean marine boundary layer

F. Sprovieri, I. M. Hedgecock and N. Pirrone
Atmospheric Chemistry and Physics 10 (8) 3985 (2010)
https://doi.org/10.5194/acp-10-3985-2010

Chemical transformations of Hg° during Arctic mercury depletion events sampled from the NASA DC-8

S. Y. Kim, R. Talbot, H. Mao, et al.
Atmospheric Chemistry and Physics Discussions 10 (4) 10077 (2010)
https://doi.org/10.5194/acpd-10-10077-2010

Insight into the Unique Oxidation Chemistry of Elemental Mercury by Chlorine-Containing Species: Experiment and Simulation

Youngchul Byun, Moohyun Cho, Won Namkung, et al.
Environmental Science & Technology 44 (5) 1624 (2010)
https://doi.org/10.1021/es902358u

Mercury Fate and Transport in the Global Atmosphere

Christian Seigneur, Krish Vijayaraghavan, Kristen Lohman and Leonard Levin
Mercury Fate and Transport in the Global Atmosphere 589 (2009)
https://doi.org/10.1007/978-0-387-93958-2_21

An investigation of the origins of reactive gaseous mercury in the Mediterranean marine boundary layer

F. Sprovieri, I. M. Hedgecock and N. Pirrone
Atmospheric Chemistry and Physics Discussions 9 (6) 24815 (2009)
https://doi.org/10.5194/acpd-9-24815-2009

A Review of Atmospheric Mercury in the Polar Environment

HANG THI NGUYEN, KI-HYUN KIM, ZANG-HO SHON and SUNGMIN HONG
Critical Reviews in Environmental Science and Technology 39 (7) 552 (2009)
https://doi.org/10.1080/10643380701764308

Mercury Fate and Transport in the Global Atmosphere

Parisa A. Ariya, Kirk Peterson, Graydon Snider and Marc Amyot
Mercury Fate and Transport in the Global Atmosphere 459 (2009)
https://doi.org/10.1007/978-0-387-93958-2_15

Effect of bromine chemistry on the atmospheric mercury cycle

Christian Seigneur and Kristen Lohman
Journal of Geophysical Research: Atmospheres 113 (D23) (2008)
https://doi.org/10.1029/2008JD010262

Simulation of atmospheric mercury depletion events (AMDEs) during polar springtime using the MECCA box model

Z.-Q. Xie, R. Sander, U. Pöschl and F. Slemr
Atmospheric Chemistry and Physics Discussions 8 (4) 13197 (2008)
https://doi.org/10.5194/acpd-8-13197-2008

Simulation of atmospheric mercury depletion events (AMDEs) during polar springtime using the MECCA box model

Z.-Q. Xie, R. Sander, U. Pöschl and F. Slemr
Atmospheric Chemistry and Physics 8 (23) 7165 (2008)
https://doi.org/10.5194/acp-8-7165-2008

Reaction of gaseous mercury with molecular iodine, atomic iodine, and iodine oxide radicals — Kinetics, product studies, and atmospheric implications

Farhad Raofie, Graydon Snider and Parisa A Ariya
Canadian Journal of Chemistry 86 (8) 811 (2008)
https://doi.org/10.1139/v08-088

Observations of Cl2, Br2, and I2 in coastal marine air

B. D. Finley and E. S. Saltzman
Journal of Geophysical Research: Atmospheres 113 (D21) (2008)
https://doi.org/10.1029/2008JD010269

A synthesis of atmospheric mercury depletion event chemistry in the atmosphere and snow

A. Steffen, T. Douglas, M. Amyot, P. Ariya, K. Aspmo, T. Berg, J. Bottenheim, S. Brooks, F. Cobbett, A. Dastoor, A. Dommergue, R. Ebinghaus, C. Ferrari, K. Gardfeldt, M. E. Goodsite, D. Lean, A. J. Poulain, C. Scherz, H. Skov, J. Sommar and C. Temme
Atmospheric Chemistry and Physics 8 (6) 1445 (2008)
https://doi.org/10.5194/acp-8-1445-2008

A synthesis of atmospheric mercury depletion event chemistry linking atmosphere, snow and water

A. Steffen, T. Douglas, M. Amyot, et al.
Atmospheric Chemistry and Physics Discussions 7 (4) 10837 (2007)
https://doi.org/10.5194/acpd-7-10837-2007

Circumpolar transport and air-surface exchange of atmospheric mercury at Ny-Ålesund (79° N), Svalbard, spring 2002

J. Sommar, I. Wängberg, T. Berg, K. Gårdfeldt, J. Munthe, A. Richter, A. Urba, F. Wittrock and W. H. Schroeder
Atmospheric Chemistry and Physics 7 (1) 151 (2007)
https://doi.org/10.5194/acp-7-151-2007

A study of the vertical scale of halogen chemistry in the Arctic troposphere during Polar Sunrise at Barrow, Alaska

Philip J. Tackett, Aubrey E. Cavender, Adam D. Keil, et al.
Journal of Geophysical Research: Atmospheres 112 (D7) (2007)
https://doi.org/10.1029/2006JD007785

Ab Initio Thermochemistry Involving Heavy Atoms:  An Investigation of the Reactions Hg + IX (X = I, Br, Cl, O)

Benjamin C. Shepler, Nikolai B. Balabanov and Kirk A. Peterson
The Journal of Physical Chemistry A 109 (45) 10363 (2005)
https://doi.org/10.1021/jp0541617

The potential influence of iodine-containing compounds on the chemistry of the troposphere in the polar spring. II. Mercury depletion

Jack G. Calvert and Steve E. Lindberg
Atmospheric Environment 38 (30) 5105 (2004)
https://doi.org/10.1016/j.atmosenv.2004.05.050