Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

A Computational Study on the Vibrational Energy Harvesting from Bimorph Beams with Particulate Piezocomposite Layers: Micro-to-Macro Mechanical Simulations

Navid Dastgir, Reza Ansari, Mohammad Kazem Hassanzadeh-Aghdam and Saeid Sahmani
Journal of Vibration Engineering & Technologies 13 (5) (2025)
https://doi.org/10.1007/s42417-025-01839-0

Electromechanical response of poly(vinylidenefluoride) thin films under acoustic stimuli

Giuseppe Viola, Jinke Chang, Felix Steckler, Tadej Rojac, Nicholas Fantuzzi and Wenhui Song
Mechanics of Advanced Materials and Structures 31 (6) 1377 (2024)
https://doi.org/10.1080/15376494.2022.2137264

Piezoelectric small scale generator: towards near-Joule output energy generation

Gael Sebald, Nguyen Thanh Tung, Gaspard Taxil, et al.
Smart Materials and Structures 32 (8) 085009 (2023)
https://doi.org/10.1088/1361-665X/acdf31

Advancements and applications of piezoelectric energy harvesters: A comprehensive review

N. K. Dixit
i-manager's Journal on Material Science 11 (3) 26 (2023)
https://doi.org/10.26634/jms.11.3.20525

Real-time acoustic energy harvesting in tunable frequencies via metasurface fabricated by additive manufacturing

Mingxiang Chi, Shibin Chen, Jiannan Jiao and Na Yu
Journal of Applied Physics 133 (24) 245105 (2023)
https://doi.org/10.1063/5.0152949

Review of contemporary energy harvesting techniques and their feasibility in wireless geophones

Naveed Iqbal, Mudassir Masood, Ali Arshad Nasir and Khurram Karim Qureshi
International Journal of Energy Research 46 (5) 5703 (2022)
https://doi.org/10.1002/er.7626

Fluorine-containing ferroelectric polymers: applications in engineering and biomedicine

V. V. Kochervinskii, O. V. Gradov and M. A. Gradova
Russian Chemical Reviews 91 (11) RCR5037 (2022)
https://doi.org/10.57634/RCR5037

Tunable acoustic metasurface based on tunable piezoelectric composite structure

Yao-Yin Peng, Zhang-Zhao Yang, Zhi-Lei Zhang, et al.
The Journal of the Acoustical Society of America 151 (2) 838 (2022)
https://doi.org/10.1121/10.0009379

Solar energy harvesting using lead-free pyroelectric bulk ceramics: A simulation study

Nishchay Saurabh, Raj Kiran and Satyanarayan Patel
Journal of Science: Advanced Materials and Devices 100527 (2022)
https://doi.org/10.1016/j.jsamd.2022.100527

Multimodal pizza-shaped piezoelectric vibration-based energy harvesters

Virgilio J Caetano and Marcelo A Savi
Journal of Intelligent Material Systems and Structures 32 (20) 2505 (2021)
https://doi.org/10.1177/1045389X211006910

Modeling of Piezoelectric Energy Harvester and Comparative Performance Study of the Proof Mass for Eigen Frequency

S.V. Salunke, Sajal Roy and K.R. Jagtap
Materials Today: Proceedings 5 (2) 4309 (2018)
https://doi.org/10.1016/j.matpr.2017.11.696

State-of-the-Art Power Management Circuits for Piezoelectric Energy Harvesters

Francesco Dell'Anna, Tao Dong, Ping Li, et al.
IEEE Circuits and Systems Magazine 18 (3) 27 (2018)
https://doi.org/10.1109/MCAS.2018.2849262

A comprehensive review on vibration energy harvesting: Modelling and realization

Chongfeng Wei and Xingjian Jing
Renewable and Sustainable Energy Reviews 74 1 (2017)
https://doi.org/10.1016/j.rser.2017.01.073

Ultralow frequency acoustic bandgap and vibration energy recovery in tetragonal folding beam phononic crystal

Nansha Gao, Jiu Hui Wu, Lie Yu and Hong Hou
International Journal of Modern Physics B 30 (18) 1650111 (2016)
https://doi.org/10.1142/S0217979216501113

Energy-Harvesting Performances of Two Tandem Piezoelectric Energy Harvesters with Cylinders in Water

Xiaobiao Shan, Rujun Song, Menglong Fan and Tao Xie
Applied Sciences 6 (8) 230 (2016)
https://doi.org/10.3390/app6080230

Predictions of Energy Content in Stretched Ribbons of Segmented Polymer Piezoelectrics

K Prakash, S Ramgopal and Sanjiv Sambandan
IOP Conference Series: Materials Science and Engineering 99 012004 (2015)
https://doi.org/10.1088/1757-899X/99/1/012004

Finite‐Element Analysis of a Varying‐Width Bistable Piezoelectric Energy Harvester

Tarun Kumar, Rajeev Kumar, Vishal S. Chauhan and Jens Twiefel
Energy Technology 3 (12) 1243 (2015)
https://doi.org/10.1002/ente.201500191

Hybrid device for acoustic noise reduction and energy harvesting based on a silicon micro-perforated panel structure

Shao-Hua Wu, Li-Dong Du, De-Yi Kong, et al.
Chinese Physics B 23 (4) 044302 (2014)
https://doi.org/10.1088/1674-1056/23/4/044302

Optimal Energy Harvesting from a Membrane Attached to a Tensegrity Structure

Mohammed R. Sunny, Cornel Sultan and Rakesh K. Kapania
AIAA Journal 52 (2) 307 (2014)
https://doi.org/10.2514/1.J052459

Surface effects on the energy-generating performance of piezoelectric circular nanomembrane energy harvesters under pressure loading

K. F. Wang and B. L. Wang
EPL (Europhysics Letters) 108 (1) 17001 (2014)
https://doi.org/10.1209/0295-5075/108/17001

Energy harvesting with piezoelectric circular membrane under pressure loading

Changki Mo, Joseph Davidson and William W Clark
Smart Materials and Structures 23 (4) 045005 (2014)
https://doi.org/10.1088/0964-1726/23/4/045005

Energy harvesting from low frequency applications using piezoelectric materials

Huidong Li, Chuan Tian and Z. Daniel Deng
Applied Physics Reviews 1 (4) 041301 (2014)
https://doi.org/10.1063/1.4900845

Segmented Electrodes for Piezoelectric Energy Harvesters

Prakash Kodali, Akshay Krishna, Roop Varun, Mandya Prasad and Sanjiv Sambandan
IEEE Electron Device Letters 35 (4) 485 (2014)
https://doi.org/10.1109/LED.2014.2305447

A Shoe-Equipped Linear Generator for Energy Harvesting

Jian-Xin Shen, Can-Fei Wang, Patrick Chi-Kwong Luk, et al.
IEEE Transactions on Industry Applications 49 (2) 990 (2013)
https://doi.org/10.1109/TIA.2013.2244193

Lead-Zirconate-Titanate Acoustic Energy Harvester Equipped with Sound-Collecting Helmholtz Resonator

Tomohiro MATSUDA, Kazuki TOMII, Satoshi IIZUMI, et al.
IEICE Transactions on Electronics E96.C (5) 722 (2013)
https://doi.org/10.1587/transele.E96.C.722

Helmholtz Resonator for Lead Zirconate Titanate Acoustic Energy Harvester

Tomohiro Matsuda, Kazuki Tomii, Saori Hagiwara, et al.
Journal of Physics: Conference Series 476 012003 (2013)
https://doi.org/10.1088/1742-6596/476/1/012003

Energy Autonomous Micro and Nano Systems

Ghislain Despesse, Jean Jacques Chaillout, Sébastien Boisseau and Claire Jean‐Mistral
Energy Autonomous Micro and Nano Systems 115 (2012)
https://doi.org/10.1002/9781118561836.ch5

Optimum power and efficiency of piezoelectric vibration energy harvesters with sinusoidal and random vibrations

M Renaud, R Elfrink, M Jambunathan, et al.
Journal of Micromechanics and Microengineering 22 (10) 105030 (2012)
https://doi.org/10.1088/0960-1317/22/10/105030

Improved Performances of Acoustic Energy Harvester Fabricated Using Sol/Gel Lead Zirconate Titanate Thin Film

Shu Kimura, Syungo Tomioka, Satoshi Iizumi, et al.
Japanese Journal of Applied Physics 50 (6S) 06GM14 (2011)
https://doi.org/10.7567/JJAP.50.06GM14

Lead–Zirconate–Titanate Acoustic Energy Harvesters with Dual Top Electrodes

Shungo Tomioka, Shu Kimura, Kyohei Tsujimoto, et al.
Japanese Journal of Applied Physics 50 (9S2) 09ND16 (2011)
https://doi.org/10.7567/JJAP.50.09ND16

Towards an autonomous self-tuning vibration energy harvesting device for wireless sensor network applications

Vinod R Challa, M G Prasad and Frank T Fisher
Smart Materials and Structures 20 (2) 025004 (2011)
https://doi.org/10.1088/0964-1726/20/2/025004

Improved Performances of Acoustic Energy Harvester Fabricated Using Sol/Gel Lead Zirconate Titanate Thin Film

Shu Kimura, Syungo Tomioka, Satoshi Iizumi, et al.
Japanese Journal of Applied Physics 50 (6) 06GM14 (2011)
https://doi.org/10.1143/JJAP.50.06GM14

Lead–Zirconate–Titanate Acoustic Energy Harvesters with Dual Top Electrodes

Shungo Tomioka, Shu Kimura, Kyohei Tsujimoto, et al.
Japanese Journal of Applied Physics 50 (9) 09ND16 (2011)
https://doi.org/10.1143/JJAP.50.09ND16

Development of a tree-shaped wind power system using piezoelectric materials

S. J. Oh, H. J. Han, S. B. Han, J. Y. Lee and W. G. Chun
International Journal of Energy Research 34 (5) 431 (2010)
https://doi.org/10.1002/er.1644

Optimizing energy harvesting parameters using response surface methodology

P. Mane, K. Mossi and C. Green
IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 56 (3) 429 (2009)
https://doi.org/10.1109/TUFFC.2009.1061

Nonlinear interface between the piezoelectric harvesting structure and the modulating circuit of an energy harvester with a real storage battery

Yuantai Hu, Huan Xue, Ting Hu and Hongping Hu
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 55 (1) 148 (2008)
https://doi.org/10.1109/TUFFC.2008.624

Power performance of circular piezoelectric diaphragm generators

Kehong Tang, Junwu Kan, Taijiang Peng, Zhigang Yang and Guangming Cheng
Frontiers of Mechanical Engineering in China 3 (4) 434 (2008)
https://doi.org/10.1007/s11465-008-0069-3

Performance analysis of piezoelectric bimorph generator

Junwu Kan, Kehong Tang, Hongwei Zhao, Chenghui Shao and Guoren Zhu
Frontiers of Mechanical Engineering in China 3 (2) 151 (2008)
https://doi.org/10.1007/s11465-008-0039-9

Coupled analysis for the harvesting structure and the modulating circuit in a piezoelectric bimorph energy harvester

Yuantai Hu, Ting Hu and Qing Jiang
Acta Mechanica Solida Sinica 20 (4) 296 (2007)
https://doi.org/10.1007/s10338-007-0735-8

A piezoelectric power harvester with adjustable frequency through axial preloads

Yuantai Hu, Huan Xue and Hongping Hu
Smart Materials and Structures 16 (5) 1961 (2007)
https://doi.org/10.1088/0964-1726/16/5/054