Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Nelson J. O’Driscoll, Jocelyn C. Kickbush, Holly E. Turner, Sara Klapstein, Mia Doncaster, Kelly Stevens, Rachel Clarke, Molly Bradford, Brianna Bowes, Josie Rogers, N. Kirk Hillier and Mark L. Mallory
265 (2024)
https://doi.org/10.1007/978-3-031-71344-6_13

Mercury biomagnification in a coastal Louisiana food web following the 2010 Deepwater Horizon oil spill

Katelyn J. Lamb, Stephen R. Midway, Rebecka L. Brasso, et al.
Frontiers in Environmental Science 10 (2022)
https://doi.org/10.3389/fenvs.2022.937124

Mercury and the Everglades. A Synthesis and Model for Complex Ecosystem Restoration

Darren G. Rumbold
Mercury and the Everglades. A Synthesis and Model for Complex Ecosystem Restoration 49 (2019)
https://doi.org/10.1007/978-3-030-32057-7_3

Mercury removal from municipal secondary effluent with hydrous ferric oxide reactive filtration

Marc W. Beutel, Stephen R. Dent, Remy L. Newcombe and Gregory Möller
Water Environment Research 91 (2) 132 (2019)
https://doi.org/10.1002/wer.1007

Effects of Dryout and Inflow Water Quality on Mercury Methylation in a Constructed Wetland

Shulu Feng, Zhijiu Ai, Shimei Zheng, Binhe Gu and Yuncong Li
Water, Air, & Soil Pollution 225 (4) (2014)
https://doi.org/10.1007/s11270-014-1929-6

Microbially enhanced dissolution of HgS in an acid mine drainage system in the California Coast Range

A. D. Jew, S. F. Behrens, J. J. Rytuba, et al.
Geobiology 12 (1) 20 (2014)
https://doi.org/10.1111/gbi.12066

Removal of inorganic mercury and methylmercury from surface waters following coagulation of dissolved organic matter with metal-based salts

Yumiko K. Henneberry, Tamara E.C. Kraus, Jacob A. Fleck, et al.
Science of The Total Environment 409 (3) 631 (2011)
https://doi.org/10.1016/j.scitotenv.2010.10.030

Assessment of mercury bioaccumulation within the pelagic food web of lakes in the western Great Lakes region

Kristofer R. Rolfhus, Britt D. Hall, Bruce A. Monson, Michael J. Paterson and Jeffrey D. Jeremiason
Ecotoxicology 20 (7) 1520 (2011)
https://doi.org/10.1007/s10646-011-0733-y

Biostrome communities and mercury and selenium bioaccumulation in the Great Salt Lake (Utah, USA)

Wayne A. Wurtsbaugh, Jodi Gardberg and Caleb Izdepski
Science of The Total Environment 409 (20) 4425 (2011)
https://doi.org/10.1016/j.scitotenv.2011.07.027

Factors influencing concentrations of dissolved gaseous mercury (DGM) and total mercury (TM) in an artificial reservoir

Myung-Chan Ahn, Bomchul Kim, Thomas M. Holsen, Seung-Muk Yi and Young-Ji Han
Environmental Pollution 158 (2) 347 (2010)
https://doi.org/10.1016/j.envpol.2009.08.036

Mercury speciation in the Persian Gulf sediments

Homira Agah, Marc Elskens, S. Mohammad Reza Fatemi, et al.
Environmental Monitoring and Assessment 157 (1-4) 363 (2009)
https://doi.org/10.1007/s10661-008-0541-x

Wetlands as principal zones of methylmercury production in southern Louisiana and the Gulf of Mexico region

B.D. Hall, G.R. Aiken, D.P. Krabbenhoft, M. Marvin-DiPasquale and C.M. Swarzenski
Environmental Pollution 154 (1) 124 (2008)
https://doi.org/10.1016/j.envpol.2007.12.017

Inputs, storage, and transport of total and methyl mercury in two temperate forest wetlands

Pranesh Selvendiran, Charles T. Driscoll, Mario R. Montesdeoca and Joseph T. Bushey
Journal of Geophysical Research: Biogeosciences 113 (G2) (2008)
https://doi.org/10.1029/2008JG000739