La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
H. Couque
J. Phys. IV France, 110 (2003) 423-428
Citations de cet article :
21 articles
Gunasilan Manar, Mohd Supian Abu Bakar, Mohd Rashdan Mohd Saad and Mohd Rosdzimin Abdul Rahman 291 (2025) https://doi.org/10.1016/B978-0-443-22118-7.00012-9
On the dynamic shear failure of Ti-6Al-4V in different test specimen geometries
Yutian Du, Zejian Xu, Caifang Qin, Mengyu Su, P.J. Tan and Fenglei Huang International Journal of Solids and Structures 304 113036 (2024) https://doi.org/10.1016/j.ijsolstr.2024.113036
Anisotropic, rate-dependent ductile fracture of Ti-6Al-4V alloy
Miguel Ruiz de Sotto, Véronique Doquet, Patrice Longère and Jessica Papasidero International Journal of Damage Mechanics 31 (3) 374 (2022) https://doi.org/10.1177/10567895211036491
The Influence of Shear Angles on the Split Hopkinson Shear Bar Testing
Bagus Budiwantoro, Muhammad A. Kariem and Burhan Febrinawarta International Journal of Impact Engineering 149 103787 (2021) https://doi.org/10.1016/j.ijimpeng.2020.103787
Microstructure dependent strain localization during primary hot working of TA15 titanium alloy: Behavior and mechanism
X.Q. Jiang, X.G. Fan, M. Zhan, R. Wang and Y.F. Liang Materials & Design 203 109589 (2021) https://doi.org/10.1016/j.matdes.2021.109589
A thermo-elastic-plastic phase-field model for simulating the evolution and transition of adiabatic shear band. Part I. Theory and model calibration
T. Wang, Z.L. Liu, Y.N. Cui, et al. Engineering Fracture Mechanics 232 107028 (2020) https://doi.org/10.1016/j.engfracmech.2020.107028
A quantitative analysis of the transition of fracture mechanisms of Ti6Al4V over a wide range of stress triaxiality and strain rate
Bing Wang, Xinran Xiao, Viktor P. Astakhov and Zhanqiang Liu Engineering Fracture Mechanics 231 107020 (2020) https://doi.org/10.1016/j.engfracmech.2020.107020
The effects of stress triaxiality and strain rate on the fracture strain of Ti6Al4V
Bing Wang, Xinran Xiao, Viktor P. Astakhov and Zhanqiang Liu Engineering Fracture Mechanics 219 106627 (2019) https://doi.org/10.1016/j.engfracmech.2019.106627
Unified modelling of adiabatic shear banding and subsequent micro-voiding driven dynamic failure of viscoplastic solids
Hannah Lois Dorothy and Patrice Longère International Journal of Impact Engineering 132 103322 (2019) https://doi.org/10.1016/j.ijimpeng.2019.103322
Dynamic shear testing of 2024 T351 aluminium at elevated temperature
Nathan J. Edwards, Muhammad A. Kariem, R.A. Rahman Rashid, et al. Materials Science and Engineering: A 754 99 (2019) https://doi.org/10.1016/j.msea.2019.03.033
Mechanical and microstructural properties of 2024-T351 aluminium using a hat-shaped specimen at high strain rates
Nathan J. Edwards, Wei Song, Stephen J. Cimpoeru, et al. Materials Science and Engineering: A 720 203 (2018) https://doi.org/10.1016/j.msea.2018.02.049
Quasi-Static and Dynamic Large Strain Shear-Tension Testing
A. Dorogoy and D. Rittel Experimental Mechanics 57 (9) 1509 (2017) https://doi.org/10.1007/s11340-017-0315-x
Modelling of high strain rate adiabatic shear banding induced failure: A comparison of two approaches
Hannah Lois Dorothy and Patrice Longère International Journal of Impact Engineering 110 219 (2017) https://doi.org/10.1016/j.ijimpeng.2017.02.024
Enlarged finite strain modelling incorporating adiabatic shear banding and post-localization microvoiding as shear failure mechanisms
Patrice Longère and André Dragon International Journal of Damage Mechanics 25 (8) 1142 (2016) https://doi.org/10.1177/1056789516645644
Experimental method for the evaluation of the susceptibility of materials to shear band formation
R. Tham EPJ Web of Conferences 26 01016 (2012) https://doi.org/10.1051/epjconf/20122601016
Adiabatic Shear Localization
Lothar W. Meyer and Frank Pursche Adiabatic Shear Localization 21 (2012) https://doi.org/10.1016/B978-0-08-097781-2.00002-2
A Shear Compression Disk Specimen with Controlled Stress Triaxiality under Quasi-Static Loading
A. Dorogoy, B. Karp and D. Rittel Experimental Mechanics 51 (9) 1545 (2011) https://doi.org/10.1007/s11340-011-9482-3
High-Strain-Rate Shear Testing Applied to Ti-6Al-4V
Jan Peirs, Patricia Verleysen and Joris Degrieck Advanced Materials Research 89-91 437 (2010) https://doi.org/10.4028/www.scientific.net/AMR.89-91.437
The use of hat-shaped specimens to study the high strain rate shear behaviour of Ti–6Al–4V
J. Peirs, P. Verleysen, J. Degrieck and F. Coghe International Journal of Impact Engineering 37 (6) 703 (2010) https://doi.org/10.1016/j.ijimpeng.2009.08.002
Numerical Study of Impact Penetration Shearing Employing Finite Strain Viscoplasticity Model Incorporating Adiabatic Shear Banding
Patrice Longère, André Dragon and Xavier Deprince Journal of Engineering Materials and Technology 131 (1) (2009) https://doi.org/10.1115/1.3030880
On the transition from adiabatic shear banding to fracture
X. Teng, T. Wierzbicki and H. Couque Mechanics of Materials 39 (2) 107 (2007) https://doi.org/10.1016/j.mechmat.2006.03.001