Article cité par

La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program. Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).

Article cité :

Tensile Behavior of Acrylonitrile Butadiene Styrene at Different Temperatures

Jiquan Li, Yadong Jia, Taidong Li, et al.
Advances in Polymer Technology 2020 1 (2020)
https://doi.org/10.1155/2020/8946591

Effects of strain rate and temperature on the mechanical behavior of carbon black reinforced elastomers based on butyl rubber and high molecular weight polyethylene

M. Hussein
Results in Physics 9 511 (2018)
https://doi.org/10.1016/j.rinp.2018.02.043

Thermal–Mechanical Coupling Behavior of Directional Polymethylmethacrylate under Tension and Compression

Hui Guo, Chunjiang Lu, Yu Chen, Junlin Tao and Longyang Chen
Polymers 10 (11) 1279 (2018)
https://doi.org/10.3390/polym10111279

Multiphysics Modelling and Simulation for Systems Design and Monitoring

Nourdine Ouali and Ali Ahmed Benyahia
Applied Condition Monitoring, Multiphysics Modelling and Simulation for Systems Design and Monitoring 2 169 (2015)
https://doi.org/10.1007/978-3-319-14532-7_18

Predicting the mechanical behavior of amorphous polymeric materials under strain through multi-scale simulation

M. Carvalho Araújo, J.P. Martins, Mohsen Mirkhalaf, et al.
Applied Surface Science (2014)
https://doi.org/10.1016/j.apsusc.2014.03.072

Polymer integration for packaging of implantable sensors

Yiheng Qin, Matiar M.R. Howlader, M. Jamal Deen, Yaser M. Haddara and P. Ravi Selvaganapathy
Sensors and Actuators B: Chemical 202 758 (2014)
https://doi.org/10.1016/j.snb.2014.05.063

Dynamic Behavior of Materials, Volume 1

M. J. Kendall and C. R. Siviour
Conference Proceedings of the Society for Experimental Mechanics Series, Dynamic Behavior of Materials, Volume 1 113 (2014)
https://doi.org/10.1007/978-3-319-00771-7_14

Experimental investigation and modeling of the tension behavior of polycarbonate with temperature effects from low to high strain rates

Kan Cao, Yang Wang and Yu Wang
International Journal of Solids and Structures 51 (13) 2539 (2014)
https://doi.org/10.1016/j.ijsolstr.2014.03.026

Experimentally simulating adiabatic conditions: Approximating high rate polymer behavior using low rate experiments with temperature profiles

Michael J. Kendall and Clive R. Siviour
Polymer 54 (18) 5058 (2013)
https://doi.org/10.1016/j.polymer.2013.06.049

Influence of strain rate, temperature and adiabatic heating on the mechanical behaviour of poly-methyl-methacrylate: Experimental and modelling analyses

M. Nasraoui, P. Forquin, L. Siad and A. Rusinek
Materials & Design 37 500 (2012)
https://doi.org/10.1016/j.matdes.2011.11.032

Effects of Temperature and Loading Rate on the Mechanical Properties of a High Temperature Epoxy Adhesive

M. D. Banea, F. S. M. de Sousa, L. F. M. da Silva, R. D. S. G. Campilho and A. M. Bastos de Pereira
Journal of Adhesion Science and Technology 25 (18) 2461 (2011)
https://doi.org/10.1163/016942411X580144

A Lagrangian framework for analyzing microstructural level response of polymer-bonded explosives

Ananda Barua and Min Zhou
Modelling and Simulation in Materials Science and Engineering 19 (5) 055001 (2011)
https://doi.org/10.1088/0965-0393/19/5/055001

Using split Hopkinson pressure bars to perform large strain compression tests on polyurea at low, intermediate and high strain rates

Jongmin Shim and Dirk Mohr
International Journal of Impact Engineering 36 (9) 1116 (2009)
https://doi.org/10.1016/j.ijimpeng.2008.12.010

A Microstructure-Level Material Model for Simulating the Machining of Carbon Nanotube Reinforced Polymer Composites

Ashutosh Dikshit, Johnson Samuel, Richard E. DeVor and Shiv G. Kapoor
Journal of Manufacturing Science and Engineering 130 (3) (2008)
https://doi.org/10.1115/1.2917564

The mechanical properties of poly(ether-ether-ketone) (PEEK) with emphasis on the large compressive strain response

P.J. Rae, E.N. Brown and E.B. Orler
Polymer 48 (2) 598 (2007)
https://doi.org/10.1016/j.polymer.2006.11.032

Modeling and validation of the large deformation inelastic response of amorphous polymers over a wide range of temperatures and strain rates

J. Richeton, S. Ahzi, K.S. Vecchio, F.C. Jiang and A. Makradi
International Journal of Solids and Structures 44 (24) 7938 (2007)
https://doi.org/10.1016/j.ijsolstr.2007.05.018

Mechanics of the rate-dependent elastic–plastic deformation of glassy polymers from low to high strain rates

A.D. Mulliken and M.C. Boyce
International Journal of Solids and Structures 43 (5) 1331 (2006)
https://doi.org/10.1016/j.ijsolstr.2005.04.016

Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers: Characterization and modeling of the compressive yield stress

J. Richeton, S. Ahzi, K.S. Vecchio, F.C. Jiang and R.R. Adharapurapu
International Journal of Solids and Structures 43 (7-8) 2318 (2006)
https://doi.org/10.1016/j.ijsolstr.2005.06.040

Polycarbonate and a Polycarbonate-POSS Nanocomposite at High Rates of Deformation

A. D. Mulliken and M. C. Boyce
Journal of Engineering Materials and Technology 128 (4) 543 (2006)
https://doi.org/10.1115/1.2345446

A unified model for stiffness modulus of amorphous polymers across transition temperatures and strain rates

J. Richeton, G. Schlatter, K.S. Vecchio, Y. Rémond and S. Ahzi
Polymer 46 (19) 8194 (2005)
https://doi.org/10.1016/j.polymer.2005.06.103

A formulation of the cooperative model for the yield stress of amorphous polymers for a wide range of strain rates and temperatures

J. Richeton, S. Ahzi, L. Daridon and Y. Rémond
Polymer 46 (16) 6035 (2005)
https://doi.org/10.1016/j.polymer.2005.05.079