La fonctionnalité Article cité par… liste les citations d'un article. Ces citations proviennent de la base de données des articles de EDP Sciences, ainsi que des bases de données d'autres éditeurs participant au programme CrossRef Cited-by Linking Program . Vous pouvez définir une alerte courriel pour être prévenu de la parution d'un nouvel article citant " cet article (voir sur la page du résumé de l'article le menu à droite).
Article cité :
R. Buck , M. Abele , J. Kunberger , T. Denk , P. Heller , E. Lüpfert
J. Phys. IV France, 09 PR3 (1999) Pr3-537-Pr3-544
Citations de cet article :
15 articles
A generalized approach for selecting solar energy system configurations for a wide range of applications
Pinchas Doron, Jacob Karni and Alexander Slocum MRS Energy & Sustainability 6 (1) (2019) https://doi.org/10.1557/mre.2019.10
Optical and Thermal Analysis of a Pressurized-Air Receiver Cluster for a 50 MWe Solar Power Tower
I. Hischier, P. Poživil and A. Steinfeld Journal of Solar Energy Engineering 137 (6) (2015) https://doi.org/10.1115/1.4031210
Numerical investigations on coupled heat transfer and synthetical performance of a pressurized volumetric receiver with MCRT–FVM method
Z.D. Cheng, Y.L. He and F.Q. Cui Applied Thermal Engineering 50 (1) 1044 (2013) https://doi.org/10.1016/j.applthermaleng.2012.08.045
A new modelling method and unified code with MCRT for concentrating solar collectors and its applications
Z.D. Cheng, Y.L. He and F.Q. Cui Applied Energy 101 686 (2013) https://doi.org/10.1016/j.apenergy.2012.07.048
A review of studies on central receiver solar thermal power plants
Omar Behar, Abdallah Khellaf and Kamal Mohammedi Renewable and Sustainable Energy Reviews 23 12 (2013) https://doi.org/10.1016/j.rser.2013.02.017
Numerical investigations on a pressurized volumetric receiver: Solar concentrating and collecting modelling
Y.L. He, Z.D. Cheng, F.Q. Cui, Z.Y. Li and D. Li Renewable Energy 44 368 (2012) https://doi.org/10.1016/j.renene.2012.02.001
A Review of Hybrid Solar–Fossil Fuel Power Generation Systems and Performance Metrics
Elysia J. Sheu, Alexander Mitsos, Ahmad A. Eter, et al. Journal of Solar Energy Engineering 134 (4) 041006 (2012) https://doi.org/10.1115/1.4006973
Volumetric receivers in Solar Thermal Power Plants with Central Receiver System technology: A review
Antonio L. Ávila-Marín Solar Energy 85 (5) 891 (2011) https://doi.org/10.1016/j.solener.2011.02.002
Solar Field Efficiency and Electricity Generation Estimations for a Hybrid Solar Gas Turbine Project in France
Pierre Garcia, Alain Ferriere, Gilles Flamant, et al. Journal of Solar Energy Engineering 130 (1) (2008) https://doi.org/10.1115/1.2807211
Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review
A.G. Imenes and D.R. Mills Solar Energy Materials and Solar Cells 84 (1-4) 19 (2004) https://doi.org/10.1016/j.solmat.2004.01.038
Optical In-Situ Assessment of a Nonimaging Secondary Concentrator in a Solar Tower
Abraham Kribus and Andreas Timinger Journal of Solar Energy Engineering 124 (3) 223 (2002) https://doi.org/10.1115/1.1488668
Solar-Hybrid Gas Turbine-based Power Tower Systems (REFOS)*
Reiner Buck, Thomas Bra¨uning, Thorsten Denk, et al. Journal of Solar Energy Engineering 124 (1) 2 (2002) https://doi.org/10.1115/1.1445444
Performance of the Directly-Irradiated Annular Pressurized Receiver (DIAPR) Operating at 20 Bar and 1,200°C
A. Kribus, P. Doron, R. Rubin, et al. Journal of Solar Energy Engineering 123 (1) 10 (2001) https://doi.org/10.1115/1.1345844
1999 ISES Solar World Congress
Manuel Romero, María J. Marcos, Félix M. Téllez, et al. 1999 ISES Solar World Congress 286 (2000) https://doi.org/10.1016/B978-008043895-5/50045-X
A Multistage Solar Receiver:
A. Kribus, P. Doron, R. Rubin, et al. Solar Energy 67 (1-3) 3 (1999) https://doi.org/10.1016/S0038-092X(00)00056-6