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Abstract - In order to dimension the mechanical elements made of shape memory alloys (SMA), a 
method based on phenomenological relation between stress and strain has been developed. This 
method and applications to pseudoelastic helical spring problems are described in this paper. 

1. - Introduction. 

The use of shape memory alloys (SMA) in industrial applications necessitates to describe their behavior, 
not only as tensile test specimen in which the stress is homogeneous but as mechanical elements (springs, 
bearings, beams.. .) where the stress distribution is, in many cases, inhomogeneous. This problem coupled 
with the non elastic behavior of SMA leads the classical method of dimensionnement to be inefficient. To 
overcome this, different approaches have been developed. 
First, abacuses have been built, but this route involves to dispose of a collection of data that can be 
representative in most of the cases that are met (different geomemes, materials, thermomechanical loadings) 
and this approach has no predictive capacity. On the other hand, this problem was the object of many 
works on the point of view of calculus. Some of them use adapted mechanical engineering classical 
formulas [I], [2],  while the others have taken into account a simplified material behavior (transformation 
stress considered as constant during the deformation) [3], [4], [S], [6]. 
The method proposed here, using constitutive equations previously established [7] takes into account a 
more realistic behavior for SMA. It has been applied on a pure torsion SMA beam and on an helical spring. 
The results obtained with this pattern are compared to experimental results performed on copper based alloy 
elements. The parameters used in the theory are deduced from uniaxial tensile tests camed out on the same 
material. 

2. - Inelastic behavior of SMA. 

For a commercial Cu-Zn-A1 SMA elaborated by TREFIMETAUX Company, experimental curves in fig. '1 
show the displacement f of an helical spring, as a function of the applied load F for different temperatures. 
It can be noticed that f is not a linear function of F, so that mechanical engineering classical formulas cannot 
be used here. The observation of fig. 2 which shows the stress-strain curve of the same material tested in 
tension at constant temperature can explain the non-linearity in f by an inelastic behavior of the material 
which leads to an inhomogeneous stress distribution inside the spring (see fig.3). New mechanical 
engineering relations must be established taking into account the behavior of SMA. This is performed in 
this contribution using a transformation criteria (1) and its associated flow rule (2) previously established 

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jp4:1991423

http://www.edpsciences.org
http://dx.doi.org/10.1051/jp4:1991423


C 4 - 1 5 2  JOURNAL DE PHYSIQUE IV 

(2) 

Function a(cPT) can be identified by developing (2) considered at constant temperature (dT = 0) for an 
uniaxial tensile stress field, assuming a stress-strain curve in bilinear form, it comes : 

3 do 
a (ePT) = denoting H=- 

d e n  
Tangent modulus H can be easily determined on a tensile curve (fig.2). The knowledge of a ( & q  allows to 
determine the material response for another elementary loading. For pure shearing, relation (2) allows to 
define a shear modulus of transformation d defined by 

In that way, thk different parameters inherent to the material behavior can be determined from measurement 
on uniaxial tension test (fig. 2) . 

S T R A I N  ( % )  

Figure 1: Displacement in function of the applied load Figure 2: Stress-Strain curve in tension test 
at different temperature for a Cu-Zn-A1 Shape on the same alloy (Ms = 7OC) at ambiant 
Memory helical spring (Ms = 7OC). temperature for wire diameter lmm. 

3. - Pure torsion of a cylindrical beam based on the Navier-Bernoulli principle. 

In agreement with the well verified assumption of Navier-Bernoulli, the application of a constant torque to 

a circular bar of radius R involves a rigid body rotation of the cross section, denoted by 8, about the 

longitudinal axis, without warping. This gives, at a given radius p, a displacement vector expressed in 
cylindrical coordinates by : 

ux=O ; ue=pe  ; u = o  
P (4) 

Expressing the deformations in the frame of the infinitesimal strain, and denoting by yf the angle of twist 
per unit length, one obtains: 

"I,e (P) = P 'I' (5 )  
The stress field z (p) in a cross section is then determined by using the behavior law of the material, and 

the expression of the torque Mt in function of the twist angle yf is obtained by using the classical formulae : 



where S is the area of the cross section. Due to the inelastic behavior of SMA ,the stress 7(p) is not related 

to the twist angle y~ in a simple way. The existence of a stress-induced phase transformation implies to 

define a critical rotation of transformation (resp. end of transformation) W, (resp. yff) which is associated 

to ys (resp. yf) the critical shear srrain. These quantities are related to the temperature through criteria (1) 
and by the Hooke's law. 
With respect to the rigid body rotation, the evolution of the transformation leads to consider the existence of 
untransformed and transformed zones delimited by Ra and R, (fig.3) which are defined from (5) : 

y = ~  s s R = y R a  and YfYf'Wf R = W  Rm (7) 

Figure 3: Dismbution of shear stress in the cross section of a circular bar in function of the twist angle. 

- When w < ytS (fig. 3a), there is no transformation and classical elastic relations remain valid. 

- When y, < w < yp two zones having a different behavior have to be considered (fig. 3b), an elastic 

core where the behavior is caracterized by pa, the elastic shear modulus of austenite, and a transformation 

plasticity domain where the shear modulus p' is defined by (3). 

P < Ra 7 ( p ) = P a . W . P  

P > Ra 7 (P) = (pa r P') . W, . R + P' . W . P 
In this range of twist angle, relation (6) gives: 

where M e  denotes the critical twisting moment of transformation defined as a function of ws using 
SR2 

classical elastic relations: Me = -- Ws 
2 Pa 

- When YJ > Wp three domains are to be considered (fig. 3c). From a fatigue limit observation in 

superelastic loading on SMA it can be considered that '4f > vf has no practical interest for superelastic 
applications, because the strain in the material is then too important (E > 3%). In the following, this range 
of twist angle is no longer taken into consideration. 

For W < Wf, the torque Mt against rotation W is represented at figure 4. Despite the simple bilinear form 
chosen for the material behavior, this relation is complex due to structure effect. Nevertheless, a bilinear 

approximation c r the Mt ('P) relation can be established considering (*)3 as negligible behind @in (9), 
W W 
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4 
and with the definition of a new transformation critical torque Mi = 7 Mt, . With these assumptions when 

4 
y~ > 5 vS, (9) turns into 

Mt= M; [y+; " '1 (10) 
Pa Ws 

Relation (10) gives a very practical approximation for the calculus of cylindrical bar in torsion. 

Figure 4: Evolution of the applied toque in function of the twist angle. 
Definition of the apparent critical torque of transformation Mt' 

4. - Application to the helical spring. Load-deflection relation. 

This analysis is now applied to an helical spring. In this case, the bending moment and the tensile force are 
assumed to be negligible considering the thread of the spring is weak. The shear force compared to the 
twisting moment Mt is neglected too. Thus there is a pure torsional shear stress z in the cross section of the 
wire and relations established for pure torsion can be applied. The specimen is loaded by a strength F at 
constant temperature T. Denotiong D the mean spring diameter,the twisting moment is defined by 

n 
Mt = F 5.  Two method of calculus for the deflection, denoted by f, are presented. 

4.1. - Complementary-energy method. 

The Crotti-Engesser theorem says that the partial derivative of the complementary energy W* with respect 
to load F is equal to the corresponding displacement f. According the summation convention for subscripts, 
the complementary energy density is defined as follows 181 

- .  
For pure twisting, this relation can be replaced by : 

d6W* -- d v  - w e  p .62(~)  (I2) 
Denoting by n the number of active coils, integration of expression (12) on the whole volume leads to 

6W*=n.a .D.yr .6Mt  (13) 
Applying to relation (13) the Crotti-Engesser theorem, it gives : 



Relation (14) leads to a very useful relation using critical torque M i  and expression (10) previously 
established for pure torsion.Two cases are then to be considered : 

4 - < 3 Vs : the applied torque is not sufficient to induce the transformation in a significant way, in that 

case the classical formulae used in mechanical engineering is obtained from (14). This leads to define a 
critical elastic displacement fs which is related to the force Fs at which y equals ys (related to the 
temperature): 

4 
- 3 WS < < y f ,  phase transformation occurs in the wire. 

The rotation y is obtained from (10) : 

and relation (14) gives the following expression for the displacement f : 

This method gives relatively good approximations for the spring and has the advantage to be very easy to 
use but it can be hardly installed on computers for general problems due to the fact that it uses derivation. 
For computation, another method based on Bresse integrations is more convenient. In addition, this 
approach gives more detailled informations (rotations, lateral displacements, changes in the geometry). 

4.2. - Method based on Bresse integrations [9] 

Due to the inelastic behavior of SMA, the Bresse integrations are solved using an incremental method . 
Each step, A y ,  of the twist angle y induces an incremental displacement caracterised by Aul in translation 
and A o l  in rotation. 
Increase in y is related to variation in Mt denoted AMb in respect with the heterogeneous distribution of 
shear stress in cross section (fig.3). it comes : 

Ayl = 
2 AMt 

* y l < w s  x P a .  R4 

A y  = 
2 AMt 

* W S < W < Y ~  
X [pa .Ra4 - P' (R4 - Ra4)] 

For the whole spring, the following expressions are finally obtained : 

in which p denotes the thread of the spring, and D denotes the me& spring diameter. 
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Figure 5: Comparison between experimental Figure 6:Same comparison for the 
and numerical results on a Cu-Zn-A1 helical spring Bresse integration. 
(Ms = 7OC) for the complementary energy method 

Results obtained for helical spring made of Cu-Zn-A1 SMA are presented in figure 5 and 6. The geometrical 
parameters of the spring are : 25 active coils of 1 mm diameter each with a 5 mm mean diameter.The 
material used is a commercial Cu-Zn-A1 SMA elaborated by TREFIMETAUX (Ms=7OC). Load-deflection 
curves for this spring are given in figure 1 at different temperatures. 

5. - Discussion. 

Both mechanical engineering approaches developed here need only tensile test experiment to characterize 
the SMA behavior.Material parameters leading to results shown in figure 5 and 6 are determined from 
measurement on the stress-strain curve presented in figure 2 (experimental shear modulus of transformation 
y'= 2600 MPa). 
Comparison between experimental and numerical results shows a good agreement for the two methods (fig. 
5 and 6). Relation (17) gives in a very practical form a first approximation for spring mechanical design. 
The use of Bresse integrations approach leads to a more accurate description of the structure effect (see fig. 
6) because no approximation was made in the calculation scheme. This last method is well adapted to 
micro-computer use. 
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