Numéro |
J. Phys. IV France
Volume 10, Numéro PR7, May 2000
International Workshop on Dynamics in Confinement
|
|
---|---|---|
Page(s) | Pr7-199 - Pr7-202 | |
DOI | https://doi.org/10.1051/jp4:2000739 |
International Workshop on Dynamics in Confinement
J. Phys. IV France 10 (2000) Pr7-199-Pr7-202
DOI: 10.1051/jp4:2000739
1 Institut für Materialphysik der Universität Wien, Strudlhofgasse 4, 1090 Wien, Austria
2 Institut Laue-Langevin, BP. 156, 38042 Grenoble cedex 9, France
3 Hahn-Meitner-Institut, Glienicker Str. 100, 14109 Berlin, Germany
4 European Synchrotron Radiation Facility, BP. 220, 38043 Grenoble cedex, France
© EDP Sciences 2000
J. Phys. IV France 10 (2000) Pr7-199-Pr7-202
DOI: 10.1051/jp4:2000739
Relaxational motion and ice formation of water adsorbed to cellulose
C. Czihak1, 2, 3, 4, M. Müller4, H. Schober2 and G. Vogl1, 31 Institut für Materialphysik der Universität Wien, Strudlhofgasse 4, 1090 Wien, Austria
2 Institut Laue-Langevin, BP. 156, 38042 Grenoble cedex 9, France
3 Hahn-Meitner-Institut, Glienicker Str. 100, 14109 Berlin, Germany
4 European Synchrotron Radiation Facility, BP. 220, 38043 Grenoble cedex, France
Abstract
Cellulose, the most abundant structural polymer in nature is strongly hydrophilic. Adsorbed water molecules are found to relax on the time scale of picoseconds far below the melting temperature of bulk water. The relaxation times are considerably longer than in bulk supercooled water. The liquid component is stable towards crystallization. With decreasing temperature it gradually freezes into a distinct amorphous polymorph of water which bears resemblance to low-density amorphous ice.
© EDP Sciences 2000