Numéro |
J. Phys. IV France
Volume 12, Numéro 1, mars 2002
|
|
---|---|---|
Page(s) | 87 - 116 | |
DOI | https://doi.org/10.1051/jp42002004 |
J. Phys. IV France 12 (2002) Pr1-87
DOI: 10.1051/jp42002004
Mathematical morphology for shape description
M. SchmittCentre de Géostatistique, École des Mines de Paris, 35 rue Saint Honoré, 77305 Fontainebleau cedex, France
Abstract
We first examine the measurements one can perform on the space of compact and convex
sets. A famous theorem, due to Hadwiger (1957), shows that any measurement with nice
properties, namely additivity, is a linear combination of Minkowski functionals. Then,
some useful formulae, linking measurements in different dimensions of space are derived.
PDF File (1.54 MB)
Contents
© EDP Sciences 2002