Numéro
J. Phys. IV France
Volume 03, Numéro C7, Novembre 1993
The 3rd European Conference on Advanced Materials and Processes
Troisiéme Conférence Européenne sur les Matériaux et les Procédés Avancés
Page(s) C7-1889 - C7-1894
DOI http://dx.doi.org/10.1051/jp4:19937302
The 3rd European Conference on Advanced Materials and Processes
Troisiéme Conférence Européenne sur les Matériaux et les Procédés Avancés

J. Phys. IV France 03 (1993) C7-1889-C7-1894

DOI: 10.1051/jp4:19937302

Microstructural design of platelet reinforced ceramics

W. POMPE1 and D.S. WILKINSON2

1  Research Group "Mechanics of Heterogeneous Solids" of the Max-Planck-Society, Technical University Dresden, Hallwachsstr. 3, 8027 Dresden, Germany
2  Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario, L8S 4L7, Canada


Abstract
Platelet reinforcement can increase the fracture toughness of ceramics. However, the responsible mechanisms are still not clearly understood. In this paper we examine the role of residual stresses due to thermal expansion mismatch. The residual stress distribution can be calculated using the effective-field approximation for ellipsoidal inclusions. The three main toughening mechanisms (crack deflection, crack bridging, and microcracking) are affected differently by residual stresses. We show how the critical flaw size can be properly assessed once the role of residual stress is taken into account, and how the flaw size is related to microstructural features in the material. It follows that by optimizing the ratio of grain size to platelet size, and by controlling the residual stress distribution, the fracture toughness can be increased by platelet reinforcement by more than 50% without a significant decrease in strength.



© EDP Sciences 1993