Numéro
J. Phys. IV France
Volume 02, Numéro C1, Avril 1992
Deuxième Congrès Français d'Acoustique / Second French Conference on Acoustics
Page(s) C1-557 - C1-560
DOI http://dx.doi.org/10.1051/jp4:19921120
Deuxième Congrès Français d'Acoustique / Second French Conference on Acoustics

J. Phys. IV France 02 (1992) C1-557-C1-560

DOI: 10.1051/jp4:19921120

SOUND PROPAGATION IN RANDOM MEDIA. Backscattering correction to the multiple forward scattering theory

B. LI, R. GROSSE and V. MELLERT

FB 8, Physik. Universität Oldenburg Postfach 2503, D-2900 Oldenburg, Germany


Abstract
The Parabolic Equation Method (PEM) is the commonly used method to deal with wave propagation in random media. This method basically requires the small ratio of wave length to correlation length (small angle scattering). Recently, de Wolf/2/ and Rino/3/ extended the PEM by including the backscattered wave, retaining the small angle scattering. In his dissertation, Groβe/4/ generalized the PEM to the case of forward wide angle scattering. In this paper, a further generalization leads to a solution for the first moment of the scalar Helmholtz equation without any restriction concerning the scattering angles.



© EDP Sciences 1992